リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cosmology and Cluster Astrophysics with Weak Gravitational Lensing and the Sunyaev-Zel'dovich Effect」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cosmology and Cluster Astrophysics with Weak Gravitational Lensing and the Sunyaev-Zel'dovich Effect

大里, 健 東京大学 DOI:10.15083/0002001846

2021.10.04

概要

In modern observational cosmology, the concordance model, which can remarkably explain the ob- servational facts, has been established in the last decade. The foundation of the current understanding of the Universe is owed to various cosmological observations. The recent theoretical and observational developments in cosmology enable one to infer physical properties of the Universe, e.g., the age of the Universe, at sub-percent level.

 One of major cosmological probes which have played a crucial role in observational cosmology is galaxy clusters. Galaxy clusters are the most massive and bound objects in the Universe, and it is regarded as ideal laboratories for energetic and violent dynamics. The abundance of galaxy clusters is sensitive to the underlying cosmological models, and the mass function can be predicted based on theoretical model. One of the ways to observe galaxy clusters is weak gravitational lensing (WL), which denotes the weak deformation of images of distant galaxies. Since galaxy clusters host abundant dark matter, they create strong gravitational field and it leads to coherent WL signal. Through WL, we can reconstruct the density distribution in galaxy clusters. In addition, we can probe into the large-scale structures in an unbiased way, and thus, WL is regarded as one of main science targets in imaging surveys. Another important probe into galaxy clusters is the thermal Sunyaev–Zel’dovich (tSZ) effect. The tSZ effect denotes the secondary temperature anisotropy of cosmic microwave background (CMB) induced by inverse Compton scattering between CMB photons and hot free electrons in galaxy clusters. The advantage of tSZ is that since Compton-y parameter, which is the observable of tSZ effect, is the projected pressure field, it directly connects the fundamental thermodynamic quantities, e.g., thermal pressure or number density, to the observed quantity. The distribution of the intra-cluster medium (ICM), which can be traced with tSZ, also reflects the large-scale structures.

 In cluster cosmology, the mass function of galaxy clusters plays a key role. Thus, the mass of galaxy clusters is the most fundamental quantity which characterizes the galaxy clusters. WL can directly reconstruct mass of galaxy clusters, but the samples detected by WL are limited to very massive clusters. Therefore, X-ray or tSZ observations are employed to explore the larger samples of galaxy clusters. However, for these probes, the mass is not a direct observable, and we need to convert the observed flux to the mass. In many applications, galaxy clusters are assumed to be in hydrostatic equilibrium (HSE), where the thermal pressure balances the self-gravity of galaxy clusters. For several galaxy clusters which can be detected both through WL and X-ray or tSZ observations, the hydrostatic mass and true mass can be estimated, and this type of the measurements is called as mass calibration measurements. The deviation from unity of the ratio between the true mass and hydrostatic mass is defined as the hydrostatic bias bHSE ≡ 1 − MHSE/Mtrue. The measured hydrostatic mass is 10–30% less than the true mass, which indicates the deviation from HSE, i.e., the existence of physical processes which support the self-gravity other than the thermal pressure. Such processes are called as non-thermal pressure. The amplitude of non-thermal pressure directly affects the mass estimate of galaxy clusters and may cause the bias in cosmological parameters from cluster counts. Thus, for accurate determination of cosmological parameters with cluster counts, the evaluation of non-thermal pressure contribution is essential. The origin of non-thermal pressure is still uncertain, but the dominant source is thought to be turbulent motion in galaxy clusters. From hydrodynamical simulations, the contribution due to the non-thermal pressure is estimated as around 20%, which is consistent with the mass calibration measurements. However, in the simulations and measurements, the samples are limited to massive clusters (> 1014 M⊙), and the contribution in low-mass galaxy clusters has not clearly been addressed yet. Interestingly, the analyses with tSZ auto-power spectrum or cluster counts of SZ detected sources suggest larger non-thermal contribution around 40%.

 In this dissertation, we employ the cross-correlations of tSZ and WL. One of the advantages of the cross-correlations is that we can preferentially extract the information of ICM at the redshift z ≃ 0.5–1, where cluster formation and merger events actively occur, because WL probes the large-scale structures at this range. Although the tSZ observable is the projected quantity and has no redshift information, we can probe the redshift evolution with the help of WL. Furthermore, the cross-correlation is complementary to the tSZ auto-correlation, which is sensitive to the structures at higher redshifts (z ≳ 1). In addition, the cross-correlations measured based on maps contain the signals from low-mass halos, which are unresolved in the SZ survey due to the small signal.

 In Chapter 6, we carry out analysis with the recent measurement of cross-correlations with Red Cluster Sequence Lensing Survey (RCSLenS) and Planck to constrain the parameter α0, which cor- responds to the amplitude of the non-thermal pressure, and the cosmological parameter σ8, which denotes the amplitude of the matter fluctu-ation at the scale of 8 h−1 Mpc. Specifically, the parameter α0 is the non-thermal pressure fraction at the halo radius R500, and the best-fit value from hydrodynamical simulations with σ8 = 0.8 is α0 = 0.18. The constraints on the parame- ters are shown in Figure 1. Only with tSZ auto-power spectrum, the analysis gives large σ8 ∼ 0.85 and high non-thermal pressure α0 ∼ 0.2–0.3. In contrast, with tSZ-WL cross-correlations, smaller σ8 ∼ 0.6 and lower non-thermal pressure α0 ∼ 0.05 are estimated. The difference arises from the different ranges of probed mass and redshift be- tween the tSZ auto-power spectrum and the tSZ-WL cross-correlations, which have not been considered in previous studies. If we fix σ8 = 0.8 in order to compare the previous studies with the tSZ auto-power spectrum, our tSZ auto-power spectrum analysis estimates the non-thermal pressure as α0 ∼ 0.25, and the corresponding hydrostatic bias parameter is 0.4–0.5, which is consistent with previous studies. Hence, if σ8 is taken as a free parameter, the incon-sistency between the tSZ auto-power spectrum and the tSZ-WL cross-correlations arises, and it implies the redshift or mass evolution of the non-thermal pressure.

 From the study presented in Chapter 6, we build a hypothesis that the non-thermal pressure has mass and redshift dependence due to the evolution of galaxy clusters. In order to verify the hypothesis through the analysis with the different redshift distribution from RCSLenS (the median redshift is 0.608), we employ the Hyper Suprime-Cam (HSC) survey (the median redshift is 0.809). Since, in the study in Chapter 6, we adopt the specific model for radial distribution of non-thermal pressure and focus on constraints on the parameter α0, it makes it difficult to directly compare the amplitude of non-thermal pressure with previous studies of mass calibration measurements or hydrodynamical simulations. Instead of assuming a specific model for the non-thermal pressure, we employ hydrostatic bias bHSE to model non-thermal pressure, which is rather simplified but easier to compare with previous studies. In addition, we conduct a cosmological analysis to jointly constrain 5 standard cosmological parameters along with hydrostatic bias.

 In Chapter 7, we conduct the measurement of the tSZ-WL cross- correlations with HSC and Planck. Figure 2 shows the constraints on hydrostatic bias parameter from the tSZ auto-power spectrum and the tSZ-WL cross-correlations, and esti- mates for galaxy clusters in mass cal- ibration measurements. Solely with the tSZ power spectrum and the tSZ-WL cross-correlations, the con- straining power on cosmological pa- rameters is weak, and thus we add priors on cosmological parameters from Planck CMB results or HSC cosmic shear analysis. Here, we fo- cus on the results with Planck prior, which is widely adopted in the pre- vious studies. The constraint on the hydrostatic bias with Planck prior is bHSE = 0.394+0.046, which is consistent with the tSZ auto-power spectrum analysis (bHSE = 0.42 ± 0.06) and the result with RCSLenS (Chapter 6). This result implies no significant redshift evolution, which contradicts the naive expectation that non-thermal pressure evolves due to merger events or mass accretion. On the other hand, our results support the pseudo-evolution scenario, where the redshift evolution of non-thermal pressure can be absorbed by the evolution of back- ground density. In order to verify that the appreciable fraction of the cross-correlation signal comes from low-mass halos (≲ 1014 M⊙), we measure the cross-correlations by masking the SZ-detected clusters by Planck in HSC footprints. After applying the additional mask, the signal is suppressed by at most 20% and we can conclude that most of the signal comes from low-mass halos, which information is not easily accessible by observables other than map-based tSZ analysis.

 In this dissertation, we have addressed the contribution of the non-thermal pressure in galaxy clusters, especially at redshifts z ≃ 0.5–1.0, where clusters are undergoing mergers and mass accretion. The existence of the non-thermal pressure directly affects the mass estimate of galaxy clusters, and thus, the accurate determination of the contribution is essential for cluster cosmology. In Chapter 6, we adopt the specific ICM model and constrain the parameter α0, which controls the amplitude of the non-thermal pressure, along with the cosmological parameter σ8 from the measurement of the tSZ-WL cross-correlation with RCSLenS and Planck. The best-fit values of α0 and σ8 are α0 ∼ 0.05 and σ8 ∼ 0.6, both of which are lower than previous studies. However, by fixing σ8 = 0.8 to be consistent with previous studies, we obtain α0 ∼ 0.2, which corresponds to the hydrostatic bias bHSE ∼ 0.4–0.5. This result is consistent with the previous analysis of tSZ power spectrum (bHSE = 0.42±0.06) but contradicts the result with mass calibration measurements (bHSE ∼ 0.2). This inconsistency can be due to the difference of probed mass and redshift scales between the tSZ auto-power spectrum and the tSZ-WL cross-correlations. In order to investigate the non-thermal pressure at the different redshifts, we employ the data of the HSC survey, which provides deeper data than RCSLenS. With the prior on cosmological parameters from Planck CMB measurements, which is widely adopted in previous studies, we constrain hydrostatic bias and 5 standard cosmological parameters. The estimated hydrostatic bias is bHSE = 0.394+0.046, which is consistent with the tSZ-WL cross-correlations from RCSLenS and Planck and the tSZ auto- power spectrum analysis, though the tSZ auto-power spectrum and the tSZ-WL cross-correlations with RCSLenS or HSC are sensitive to galaxy clusters at different redshifts. Accordingly, our results indicate no significant redshift evolution of non-thermal pressure. In contrast, mass calibration measurements suggest lower non-thermal pressure for massive galaxy clusters of bHSE ∼ 0.2. This difference can be explained by the fact that the tSZ auto-power spectrum and the tSZ-WL cross-correlations can be sourced by low-mass halos (≲ 1014 M⊙). In summary, our results imply that non-thermal pressure is more predominant for low-mass halos than massive halos. Thus, the cross-correlations are promising probes for such low-mass halos, which contributions are hard to estimate otherwise.

 Finally, we remark on future prospects. The current constraints are limited by the small coverage of the HSC survey (∼ 100 deg2). However, the survey is still ongoing, and more data will be released in short timescale. For the full sky coverage (∼ 1000 deg2), the statistical errors become small, and thus, tighter constraints can be obtained. Furthermore, the high source galaxy number density in the HSC survey enable one to carry out the tomographic measurement of the cross-correlations. With this technique, we can closely address the redshift evolution of the hydrostatic bias. For the tSZ side, we are planning to employ the data with Atacama Cosmology Telescope (ACT), which angular resolutions is 1 arcmin. In the current analysis, we are restricted to constraints on simplified model parameters α0 and bHSE due to the large beam size 10 arcmin in Planck. The high resolution of ACT enables one to probe the fine structure of ICM, e.g., radial profile of non-thermal pressure. By refining the model of ICM, we can improve the constraints on cosmological parameters and investigate the mass and redshift evolution of the non-thermal pressure.

参考文献

Addison G. E., Dunkley J., Spergel D. N., 2012, Monthly Notices of the Royal Astro- nomical Society, 427, 1741

Aihara H., et al., 2018, Publications of the Astronomical Society of Japan, 70, S4

Allen S. W., Evrard A. E., Mantz A. B., 2011, Annual Review of Astronomy and Astro- physics, 49, 409

Amendola L., et al., 2013, Living Reviews in Relativity, 16, 6

Anderson L., et al., 2014, Monthly Notices of the Royal Astronomical Society, 441, 24 Angulo R. E., Pontzen A., 2016, Monthly Notices of the Royal Astronomical Society, 462, L1

Arnaud M., Pratt G. W., Piffaretti R., Böhringer H., Croston J. H., Pointecouteau E., 2010, Astronomy & Astrophysics, 517, A92

BOSS Collaboration 2015, Physical Review D, 92, 123516

Bacon D. J., Refregier A. R., Ellis R. S., 2000, Monthly Notices of the Royal Astronomical Society, 318, 625

Baltz E. A., Marshall P., Oguri M., 2009, Journal of Cosmology and Astro-Particle Physics, 2009, 015

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, The Astrophysical Journal, 304, 15

Bartelmann M., Schneider P., 2001, Physics Reports, 340, 291

Battaglia N., Bond J. R., Pfrommer C., Sievers J. L., 2012, The Astrophysical Journal, 758, 75

Battaglia N., Hill J. C., Murray N., 2015, The Astrophysical Journal, 812, 154 Battaglia N., et al., 2016, Journal of Cosmology and Astro-Particle Physics, 2016, 013 Battaglia N., Ferraro S., Schaan E., Spergel D. N., 2017, Journal of Cosmology and Astroparticle Physics, 11, 040

Battye R. A., Charnock T., Moss A., 2015, Physical Review D, 91, 103508

Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, The Astrophysical Journal, 762, 109 Bennett C. L., et al., 2003, The Astrophysical Journal Supplement Series, 148, 1 Bernstein G. M., Jarvis M., 2002, The Astronomical Journal, 123, 583

Bhattacharya S., Heitmann K., White M., Lukić Z., Wagner C., Habib S., 2011, The Astrophysical Journal, 732, 122

Birkinshaw M., 1999, Physics Reports, 310, 97

Bocquet S., Saro A., Dolag K., Mohr J. J., 2016, Monthly Notices of the Royal Astro- nomical Society, 456, 2361

Bode P., Ostriker J. P., Vikhlinin A., 2009, The Astrophysical Journal, 700, 989 Boggess N. W., et al., 1992, The Astrophysical Journal, 397, 420

Böhringer H., et al., 2007, Astronomy & Astrophysics, 469, 363

Bolliet B., Comis B., Komatsu E., Macías-Pérez J. F., 2018, Monthly Notices of the Royal Astronomical Society, 477, 4957

Bridle S., King L., 2007, New Journal of Physics, 9, 444

Bryan G. L., Norman M. L., 1998, The Astrophysical Journal, 495, 80

Budzynski J. M., Koposov S. E., McCarthy I. G., Belokurov V., 2014, Monthly Notices of the Royal Astronomical Society, 437, 1362

Bullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V., Klypin A. A., Primack J. R., Dekel A., 2001, Monthly Notices of the Royal Astronomical Society, 321, 559

Carlstrom J. E., Holder G. P., Reese E. D., 2002, Annual Review of Astronomy and Astrophysics, 40, 643

Catelan P., Kamionkowski M., Blandford R. D., 2001, Monthly Notices of the Royal Astronomical Society, 320, L7

Cavaliere A., Fusco-Femiano R., 1976, Astronomy & Astrophysics, 500, 95 Cavaliere A., Fusco-Femiano R., 1978, Astronomy & Astrophysics, 70, 677

Cole S., Kaiser N., 1988, Monthly Notices of the Royal Astronomical Society, 233, 637 Cole S., Kaiser N., 1989, Monthly Notices of the Royal Astronomical Society, 237, 1127

Comparat J., Prada F., Yepes G., Klypin A., 2017, Monthly Notices of the Royal Astro- nomical Society, 469, 4157

DES Collaboration 2017, arXiv e-prints,

Dark Energy Survey Collaboration 2016, Monthly Notices of the Royal Astronomical Society, 460, 1270

Davis M., Huchra J., 1982, The Astrophysical Journal, 254, 437

Davis M., Huchra J., Latham D. W., Tonry J., 1982, The Astrophysical Journal, 253, 423

Dawson K. S., et al., 2013, The Astronomical Journal, 145, 10

Despali G., Giocoli C., Angulo R. E., Tormen G., Sheth R. K., Baso G., Moscardini L., 2016, Monthly Notices of the Royal Astronomical Society, 456, 2486

Diemer B., 2018, The Astrophysical Journal Supplement Series, 239, 35 Diemer B., Kravtsov A. V., 2014, The Astrophysical Journal, 789, 1 Diemer B., Kravtsov A. V., 2015, The Astrophysical Journal, 799, 108 Dodelson S., 2003, Modern cosmology

Dolag K., Komatsu E., Sunyaev R., 2016, Monthly Notices of the Royal Astronomical Society, 463, 1797

Duffy A. R., Schaye J., Kay S. T., Dalla Vecchia C., 2008, Monthly Notices of the Royal Astronomical Society, 390, L64

Dutton A. A., Macciò A. V., 2014, Monthly Notices of the Royal Astronomical Society, 441, 3359

Einasto J., 1965, Trudy Astrofizicheskogo Instituta Alma-Ata, 5, 87

Einstein A., 1916, Annalen der Physik, 354, 769

Eisenstein D. J., et al., 2005, The Astrophysical Journal, 633, 560

Eke V. R., Navarro J. F., Frenk C. S., 1998, The Astrophysical Journal, 503, 569 Falco E. E., Gorenstein M. V., Shapiro I. I., 1985, The Astrophysical Journal, 289, L1 Flender S., Nagai D., McDonald M., 2017, The Astrophysical Journal, 837, 124

Font-Ribera A., McDonald P., Slosar A., 2018, Journal of Cosmology and Astro-Particle Physics, 2018, 003

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, Publications of the Astronomical Society of the Pacific, 125, 306

Friedmann A., 1922, Zeitschrift fur Physik, 10, 377

Friedmann A., 1924, Zeitschrift fur Physik, 21, 326

Gao L., Navarro J. F., Cole S., Frenk C. S., White S. D. M., Springel V., Jenkins A., Neto A. F., 2008, Monthly Notices of the Royal Astronomical Society, 387, 536

George E. M., et al., 2015, The Astrophysical Journal, 799, 177 Giodini S., et al., 2009, The Astrophysical Journal, 703, 982

Gonzalez A. H., Zaritsky D., Zabludoff A. I., 2007, The Astrophysical Journal, 666, 147

Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann M., 2005, The Astrophysical Journal, 622, 759

Gunn J. E., Gott J. Richard I., 1972, The Astrophysical Journal, 176, 1 Gunn J. E., Peterson B. A., 1965, The Astrophysical Journal, 142, 1633 Guth A. H., 1981, Physical Review D, 23, 347

Hahn O., Abel T., 2011, Monthly Notices of the Royal Astronomical Society, 415, 2101

Hamana T., Mellier Y., 2001, Monthly Notices of the Royal Astronomical Society, 327, 169

Hamana T., et al., 2003, The Astrophysical Journal, 597, 98 Hand N., et al., 2012, Physical Review Letters, 109, 041101

Harnois-Déraps J., et al., 2016, Monthly Notices of the Royal Astronomical Society, 460, 434

Harrison E. R., 1970, Physical Review D, 1, 2726

Heymans C., et al., 2012, Monthly Notices of the Royal Astronomical Society, 427, 146 Hikage C., et al., 2018, arXiv e-prints, p. arXiv:1809.09148

Hilbert S., Hartlap J., White S. D. M., Schneider P., 2009, Astronomy & Astrophysics, 499, 31

Hildebrandt H., et al., 2016, Monthly Notices of the Royal Astronomical Society, 463, 635

Hildebrandt H., et al., 2017, Monthly Notices of the Royal Astronomical Society, 465, 1454

Hill J. C., Spergel D. N., 2014, Journal of Cosmology and Astroparticle Physics, 2, 030 Hinshaw G., et al., 2013, The Astrophysical Journal Supplement Series, 208, 19

Hirata C., Seljak U., 2003, Monthly Notices of the Royal Astronomical Society, 343, 459 Hirata C. M., Seljak U., 2004, Physical Review D, 70, 063526

Hitomi Collaboration 2016, Nature, 535, 117

Hivon E., Górski K. M., Netterfield C. B., Crill B. P., Prunet S., Hansen F., 2002, The Astrophysical Journal, 567, 2

Hoekstra H., et al., 2006, The Astrophysical Journal, 647, 116

Hoekstra H., Herbonnet R., Muzzin A., Babul A., Mahdavi A., Viola M., Cacciato M., 2015, Monthly Notices of the Royal Astronomical Society, 449, 685

Hogg D. W., 1999, preprint, pp astro–ph/9905116 (arXiv:astro-ph/9905116)

Hojjati A., McCarthy I. G., Harnois-Deraps J., Ma Y.-Z., Van Waerbeke L., Hinshaw G., Le Brun A. M. C., 2015, Journal of Cosmology and Astroparticle Physics, 10, 047

Hojjati A., et al., 2017, Monthly Notices of the Royal Astronomical Society, 471, 1565 Horowitz B., Seljak U., 2017, Monthly Notices of the Royal Astronomical Society, 469, 394

Hu W., 1999, The Astrophysical Journal, 522, L21

Hubble E., 1929, Proceedings of the National Academy of Science, 15, 168 Huchra J. P., et al., 2012, The Astrophysical Journal Supplement Series, 199, 26

Ishiyama T., Fukushige T., Makino J., 2009, Publications of the Astronomical Society of Japan, 61, 1319

Itoh N., Kohyama Y., Nozawa S., 1998, The Astrophysical Journal, 502, 7 Jain B., Seljak U., White S., 2000, The Astrophysical Journal, 530, 547 Jing Y. P., 1998, The Astrophysical Journal Letters, 503, L9

Jing Y. P., Suto Y., 2002, The Astrophysical Journal, 574, 538

Jones D. H., et al., 2009, Monthly Notices of the Royal Astronomical Society, 399, 683 Kaiser N., 1986, Monthly Notices of the Royal Astronomical Society, 222, 323

Kaiser N., 1992, The Astrophysical Journal, 388, 272

Kaiser N., 1998, The Astrophysical Journal, 498, 26

Kaiser N., Squires G., 1993, The Astrophysical Journal, 404, 441

Khatri R., Sunyaev R., 2015, Journal of Cosmology and Astroparticle Physics, 8, 013 Kilbinger M., 2015, Reports on Progress in Physics, 78, 086901

Kitayama T., 2014, Progress of Theoretical and Experimental Physics, 2014, 06B111 Klypin A. A., Trujillo-Gomez S., Primack J., 2011, The Astrophysical Journal, 740, 102 Köhlinger F., et al., 2017, Monthly Notices of the Royal Astronomical Society, 471, 4412 Komatsu E., Kitayama T., 1999, The Astrophysical Journal Letters, 526, L1

Komatsu E., Seljak U., 2001, Monthly Notices of the Royal Astronomical Society, 327, 1353

Komatsu E., Seljak U., 2002, Monthly Notices of the Royal Astronomical Society, 336, 1256

Kravtsov A. V., Borgani S., 2012, Annual Review of Astronomy and Astrophysics, 50, 353

Kravtsov A. V., Klypin A. A., Khokhlov A. M., 1997, The Astrophysical Journal Sup- plement Series, 111, 73

Kravtsov A. V., Vikhlinin A., Nagai D., 2006, The Astrophysical Journal, 650, 128 LSST Science Collaboration 2009, preprint, p. arXiv:0912.0201 (arXiv:0912.0201)

Lau E. T., Nagai D., Kravtsov A. V., Zentner A. R., 2011, The Astrophysical Journal, 734, 93

Laureijs R., et al., 2011, preprint, p. arXiv:1110.3193 (arXiv:1110.3193) Leauthaud A., et al., 2007, The Astrophysical Journal Supplement Series, 172, 219 Leauthaud A., et al., 2012, The Astrophysical Journal, 744, 159

Leauthaud A., et al., 2017, Monthly Notices of the Royal Astronomical Society, 467, 3024 Limber D. N., 1953, The Astrophysical Journal, 117, 134

LoVerde M., Afshordi N., 2008, Physical Review D, 78, 123506

Łokas E. L., Mamon G. A., 2001, Monthly Notices of the Royal Astronomical Society, 321, 155

Ma Y.-Z., Van Waerbeke L., Hinshaw G., Hojjati A., Scott D., Zuntz J., 2015, Journal of Cosmology and Astroparticle Physics, 9, 046

Makino N., Suto Y., 1993, The Astrophysical Journal, 405, 1

Makino N., Sasaki S., Suto Y., 1998, The Astrophysical Journal, 497, 555

Makiya R., Ando S., Komatsu E., 2018, Monthly Notices of the Royal Astronomical Society, 480, 3928

Mandelbaum R., 2018, Annual Review of Astronomy and Astrophysics, 56, 393 Mandelbaum R., et al., 2018a, Publications of the Astronomical Society of Japan, 70, S25

Mandelbaum R., et al., 2018b, Monthly Notices of the Royal Astronomical Society, 481, 3170

Matsubara T., 2008, Physical Review D, 77, 063530

McCarthy I. G., Le Brun A. M. C., Schaye J., Holder G. P., 2014, Monthly Notices of the Royal Astronomical Society, 440, 3645

McDonald M., et al., 2013, The Astrophysical Journal, 774, 23

McQuinn M., White M., 2011, Monthly Notices of the Royal Astronomical Society, 415, 2257

Mead A. J., Peacock J. A., Heymans C., Joudaki S., Heavens A. F., 2015, Monthly Notices of the Royal Astronomical Society, 454, 1958

Medezinski E., et al., 2018, Publications of the Astronomical Society of Japan, 70, S28 Miller L., et al., 2013, Monthly Notices of the Royal Astronomical Society, 429, 2858 Miyatake H., et al., 2015, The Astrophysical Journal, 806, 1

Miyatake H., et al., 2018, arXiv e-prints, p. arXiv:1804.05873

Mo H. J., White S. D. M., 1996, Monthly Notices of the Royal Astronomical Society, 282, 347

More S., Miyatake H., Mandelbaum R., Takada M., Spergel D. N., Brownstein J. R., Schneider D. P., 2015, The Astrophysical Journal, 806, 2

Munshi D., Valageas P., van Waerbeke L., Heavens A., 2008, Physics Reports, 462, 67 Munshi D., Joudaki S., Coles P., Smidt J., Kay S. T., 2014, Monthly Notices of the Royal Astronomical Society, 442, 69

Murata R., Nishimichi T., Takada M., Miyatake H., Shirasaki M., More S., Takahashi R., Osato K., 2018, The Astrophysical Journal, 854, 120

Murray S. G., Power C., Robotham A. S. G., 2013, Astronomy and Computing, 3, 23 Nagai D., Kravtsov A. V., Vikhlinin A., 2007, The Astrophysical Journal, 668, 1 Nagamine K., Ostriker J. P., Fukugita M., Cen R., 2006, The Astrophysical Journal, 653, 881

Navarro J. F., Frenk C. S., White S. D. M., 1996, The Astrophysical Journal, 462, 563 Navarro J. F., Frenk C. S., White S. D. M., 1997, The Astrophysical Journal, 490, 493 Nelson K., Lau E. T., Nagai D., 2014, The Astrophysical Journal, 792, 25

Nishimichi T., et al., 2009, Publications of the Astronomical Society of Japan, 61, 321

Nishimichi T., Taruya A., Koyama K., Sabiu C., 2010, Journal of Cosmology and As- troparticle Physics, 7, 002

Nozawa S., Itoh N., Kohyama Y., 1998, The Astrophysical Journal, 508, 17

Oguri M., Hamana T., 2011, Monthly Notices of the Royal Astronomical Society, 414, 1851

Oguri M., Takada M., 2011, Physical Review D, 83, 023008

Oguri M., Lee J., Suto Y., 2003, The Astrophysical Journal, 599, 7

Oguri M., Takada M., Okabe N., Smith G. P., 2010, Monthly Notices of the Royal Astronomical Society, 405, 2215

Oguri M., Bayliss M. B., Dahle H., Sharon K., Gladders M. D., Natarajan P., Hennawi J. F., Koester B. P., 2012, Monthly Notices of the Royal Astronomical Society, 420, 3213

Oguri M., et al., 2018, Publications of the Astronomical Society of Japan, 70, S26 Okabe T., Nishimichi T., Oguri M., Peirani S., Kitayama T., Sasaki S., Suto Y., 2018,

Monthly Notices of the Royal Astronomical Society, 478, 1141

Osato K., Shirasaki M., Yoshida N., 2015, The Astrophysical Journal, 806, 186

Osato K., Flender S., Nagai D., Shirasaki M., Yoshida N., 2018, Monthly Notices of the Royal Astronomical Society, 475, 532

Ostriker J. P., Bode P., Babul A., 2005, The Astrophysical Journal, 634, 964 Paczynski B., 1986, The Astrophysical Journal, 304, 1

Peebles P. J. E., 1980, The large-scale structure of the universe Peebles P. J. E., 1993, Principles of Physical Cosmology

Penna-Lima M., Bartlett J. G., Rozo E., Melin J. B., Merten J., Evrard A. E., Postman M., Rykoff E., 2017, Astronomy & Astrophysics, 604, A89

Penzias A. A., Wilson R. W., 1965, The Astrophysical Journal, 142, 419 Phillips M. M., 1993, The Astrophysical Journal Letters, 413, L105

Pillepich A., Porciani C., Hahn O., 2010, Monthly Notices of the Royal Astronomical Society, 402, 191

Planck Collaboration 2013, Astronomy & Astrophysics, 550, A131 Planck Collaboration 2016a, Astronomy & Astrophysics, 594, A1 Planck Collaboration 2016b, Astronomy & Astrophysics, 594, A11 Planck Collaboration 2016c, Astronomy & Astrophysics, 594, A13 Planck Collaboration 2016d, Astronomy & Astrophysics, 594, A22 Planck Collaboration 2016e, Astronomy & Astrophysics, 594, A24 Planck Collaboration 2018a, arXiv e-prints, p. arXiv:1807.06209 Planck Collaboration 2018b, arXiv e-prints, p. arXiv:1807.06210

Pratt G. W., Croston J. H., Arnaud M., Böhringer H., 2009, Astronomy & Astrophysics, 498, 361

Press W. H., Schechter P., 1974, The Astrophysical Journal, 187, 425

Rhodes J., Refregier A., Groth E. J., 2001, The Astrophysical Journal, 552, L85 Riess A. G., et al., 2011, The Astrophysical Journal, 730, 119

Roncarelli M., Moscardini L., Borgani S., Dolag K., 2007, Monthly Notices of the Royal Astronomical Society, 378, 1259

Rubin V. C., Ford W. Kent J., 1970, The Astrophysical Journal, 159, 379

Rubin V. C., Ford W. K. J., Thonnard N., 1980, The Astrophysical Journal, 238, 471 SDSS Collaboration 2000, The Astronomical Journal, 120, 1579

Sato K., 1981, Monthly Notices of the Royal Astronomical Society, 195, 467

Sazonov S. Y., Sunyaev R. A., 1999, Monthly Notices of the Royal Astronomical Society, 310, 765

Schaan E., et al., 2016, Physical Review D, 93, 082002

Schaye J., et al., 2015, Monthly Notices of the Royal Astronomical Society, 446, 521 Schneider P., Seitz C., 1995, Astronomy & Astrophysics, 294, 411

Schneider P., Ehlers J., Falco E. E., 1992, Gravitational Lenses, doi:10.1007/978-3-662- 03758-4.

Scoccimarro R., 1998, Monthly Notices of the Royal Astronomical Society, 299, 1097 Seitz C., Schneider P., 1997, Astronomy & Astrophysics, 318, 687

Seljak U., Warren M. S., 2004, Monthly Notices of the Royal Astronomical Society, 355, 129

Semboloni E., Hoekstra H., Schaye J., 2013, Monthly Notices of the Royal Astronomical Society, 434, 148

Sereno M., Covone G., Izzo L., Ettori S., Coupon J., Lieu M., 2017, Monthly Notices of the Royal Astronomical Society, 472, 1946

Shaw L. D., Nagai D., Bhattacharya S., Lau E. T., 2010, The Astrophysical Journal, 725, 1452

Sheth R. K., Tormen G., 1999, Monthly Notices of the Royal Astronomical Society, 308, 119

Sheth R. K., Mo H. J., Tormen G., 2001, Monthly Notices of the Royal Astronomical Society, 323, 1

Shi X., Komatsu E., 2014, Monthly Notices of the Royal Astronomical Society, 442, 521 Shi X., Komatsu E., Nelson K., Nagai D., 2015, Monthly Notices of the Royal Astronom-ical Society, 448, 1020

Shi X., Komatsu E., Nagai D., Lau E. T., 2016, Monthly Notices of the Royal Astronom- ical Society, 455, 2936

Shirasaki M., 2019, Monthly Notices of the Royal Astronomical Society, 483, 342 Shirasaki M., Hamana T., Takada M., Takahashi R., Miyatake H., 2019, arXiv e-prints, p. arXiv:1901.09488

Sievers J. L., et al., 2013, Journal of Cosmology and Astroparticle Physics, 10, 060

Singh S., Mandelbaum R., More S., 2015, Monthly Notices of the Royal Astronomical Society, 450, 2195

Slosar A., et al., 2011, Journal of Cosmology and Astro-Particle Physics, 2011, 001 Smith G. P., et al., 2016, Monthly Notices of the Royal Astronomical Society, 456, L74 Soergel B., Saro A., Giannantonio T., Efstathiou G., Dolag K., 2018, Monthly Notices of the Royal Astronomical Society, 478, 5320

Spergel D., et al., 2015, preprint, p. arXiv:1503.03757 (arXiv:1503.03757) Springel V., 2005, Monthly Notices of the Royal Astronomical Society, 364, 1105 Springel V., 2010, Monthly Notices of the Royal Astronomical Society, 401, 791 Springel V., Yoshida N., White S. D. M., 2001, New Astronomy, 6, 79

Springel V., et al., 2018, Monthly Notices of the Royal Astronomical Society, 475, 676 Starobinsky A. A., 1980, Physics Letters B, 91, 99

Sugimoto D., Chikada Y., Makino J., Ito T., Ebisuzaki T., Umemura M., 1990, Nature, 345, 33

Sunyaev R. A., Zel’dovich Y. B., 1972, Comments on Astrophysics and Space Physics, 4, 173

Sunyaev R. A., Zel’dovich Y. B., 1980, Monthly Notices of the Royal Astronomical Soci- ety, 190, 413

Suto Y., Sasaki S., Makino N., 1998, The Astrophysical Journal, 509, 544

Suto D., Kawahara H., Kitayama T., Sasaki S., Suto Y., Cen R., 2013, The Astrophysical Journal, 767, 79

Takada M., Jain B., 2003a, Monthly Notices of the Royal Astronomical Society, 340, 580 Takada M., Jain B., 2003b, Monthly Notices of the Royal Astronomical Society, 344, 857 Takada M., Komatsu E., Futamase T., 2006, Physical Review D, 73, 083520

Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, The Astrophysical Journal, 761, 152

Takahashi R., Hamana T., Shirasaki M., Namikawa T., Nishimichi T., Osato K., Shi- royama K., 2017, The Astrophysical Journal, 850, 24

Tanaka M., et al., 2018, Publications of the Astronomical Society of Japan, 70, S9

Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., Gottlöber S., Holz D. E., 2008, The Astrophysical Journal, 688, 709

Tinker J. L., Robertson B. E., Kravtsov A. V., Klypin A., Warren M. S., Yepes G., Gottlöber S., 2010, The Astrophysical Journal, 724, 878

Tonry J., Davis M., 1979, The Astronomical Journal, 84, 1511

Treu T., 2010, Annual Review of Astronomy and Astrophysics, 48, 87

Tröster T., Van Waerbeke L., 2014, Journal of Cosmology and Astroparticle Physics, 11, 008

Tsujikawa S., 2013, Classical and Quantum Gravity, 30, 214003

Ursino E., Galeazzi M., Roncarelli M., 2010, The Astrophysical Journal, 721, 46 Valageas P., Nishimichi T., 2011, Astronomy & Astrophysics, 527, A87

Van Waerbeke L., 2000, Monthly Notices of the Royal Astronomical Society, 313, 524 Van Waerbeke L., et al., 2000, Astronomy & Astrophysics, 358, 30

Van Waerbeke L., Hinshaw G., Murray N., 2014, Physical Review D, 89, 023508

Viel M., Becker G. D., Bolton J. S., Haehnelt M. G., 2013, Physical Review D, 88, 043502 Walsh D., Carswell R. F., Weymann R. J., 1979, Nature, 279, 381

Watson W. A., Iliev I. T., D’Aloisio A., Knebe A., Shapiro P. R., Yepes G., 2013, Monthly Notices of the Royal Astronomical Society, 433, 1230

Weinberg S., 1972, Gravitation and Cosmology: Principles and Applications of the Gen- eral Theory of Relativity

Weinberg S., 2008, Cosmology

Weinberg D. H., Mortonson M. J., Eisenstein D. J., Hirata C., Riess A. G., Rozo E., 2013, Physics Reports, 530, 87

White S. D. M., 1994, arXiv e-prints, pp astro–ph/9410043 White M., Hu W., 2000, The Astrophysical Journal, 537, 1

Wittman D. M., Tyson J. A., Kirkman D., Dell’Antonio I., Bernstein G., 2000, Nature, 405, 143

Yèche C., Palanque-Delabrouille N., Baur J., du Mas des Bourboux H., 2017, Journal of Cosmology and Astro-Particle Physics, 2017, 047

Zel’dovich Y. B., 1970, Astronomy & Astrophysics, 500, 13

Zel’dovich Y. B., 1972, Monthly Notices of the Royal Astronomical Society, 160, 1P Zwicky F., 1933, Helvetica Physica Acta, 6, 110 de Jong J. T. A., et al., 2013, The Messenger, 154, 44

von der Linden A., et al., 2014, Monthly Notices of the Royal Astronomical Society, 443, 1973

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る