リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Feasibility of Microwave-Based Scissors and Tweezers in Partial Hepatectomy: An Initial Assessment on Canine Model.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Feasibility of Microwave-Based Scissors and Tweezers in Partial Hepatectomy: An Initial Assessment on Canine Model.

DANG Khiem Tran NAKA Shigeyuki 10359771 YAMADA Atsushi 40534334 0000-0002-5493-5085 TANI Tohru 20179823 滋賀医科大学

2021.06.17

概要

Purpose:
This study aimed to assess the feasibility of partial hepatectomy (PH) simplified by using microwave-based devices in animal experiments.
Methods:
PH was performed on 16 beagles using either Acrosurg Scissors (AS) or Acrosurg Tweezers (AT) without hepatic pedicle (HP) control. Parenchymal transection time, Glissonean pedicle (GP) seal time, bleeding volume, bile leak, and burst pressure were recorded. Probable complications were investigated after 4 weeks.
Results:
Transection time (6.5 [6.0–7.6] vs. 11.8 [10.5–20.2] min, p < 0.001) with AT were significantly shorter than with AS. GP sealing times (60 [55–60] vs. 57 [46–91] s, p = 0.859) by both devices were nearly similar. Bleeding volume in the AT group was approximately one-fourth of that in the AS group (6.7 [1.4–22] vs. 28.8 [5.8–48] mL, p = 0.247). AT created higher burst pressure on the bile duct stumps (p = 0.0161). The two devices did not differ significantly in morbidity and mortality after four-week follow-up.
Conclusion:
Acrosurg devices achieved a safe PH without HP control owing to microwave-based sealing. AS could be used alone in PH, whereas the clamp-crushing function of AT seemed more advantageous in reducing the transection time and blood loss.

この論文で使われている画像

参考文献

6. Pai M, Spalding D, Jiao L, Habib N. Use of bipolar radiofrequency in

parenchymal transection of the liver, pancreas and kidney. Dig Surg. (2012)

29:43–7. doi: 10.1159/000335732

7. Ichida A, Hasegawa K, Takayama T, Kudo H, Sakamoto Y, Yamazaki

S, et al. Randomized clinical trial comparing two vessel-sealing devices

with crush clamping during liver transection. Br J Surg. (2016) 103:1795–

803. doi: 10.1002/bjs.10297

8. Ikeda M, Hasegawa K, Sano K, Imamura H, Beck Y, Sugawara Y, et al.

The vessel sealing system (LigaSure) in hepatic resection a Randomized

controlled trial. Ann Surg. (2009) 250:199–203. doi: 10.1097/SLA.0b013e3181

334f9

9. Reddy SK, Barbas AS, Gan TJ, Hill SE, Roche AM, Clary BM.

Hepatic parenchymal transection with vascular staplers:a comparative

analysis with the crush-clamp technique. Am J Surg. (2008)

196:760–67. doi: 10.1016/j.amjsurg.2007.12.054

10. Schemmer P, Bruns H, Weitz J, Schmidt J, Buchler MW.

Liver transection using vascular stapler: a review. HPB. (2008)

10:249–52. doi: 10.1080/13651820802166930

1. Rahbari NN, Garden OJ, Padbury R, Maddern G, Koch M, Hugh TJ,

et al. Post-hepatectomy haemorrhage: a definition and grading by the

International study group of liver surgery (ISGLS). HPB. (2011) 13:528–

35. doi: 10.1111/j.1477-2574.2011.00319.x

2. Martin AN, Narayanan S, Turrentine FE, Bauer TW, Adams RB,

Stukenborg GJ, et al. Clinical factors and postoperative impact

of bile leak after liver resection. J Gastrointest Surg. (2018)

22:661–7. doi: 10.1007/s11605-017-3650-4

3. Scalzone R, Lopez-Ben S, Figueras J. How to transect the liver? A history

lasting more than a century. Dig Surg. (2012) 29:30–4. doi: 10.1159/000335719

4. Yamamoto M, Ariizumi S. Glissonean pedicle approach in liver

surgery. Ann Gastroenterol Surg. (2018) 2:124–28. doi: 10.1002/ags

3.12062

5. Romano F, Garancini M, Uggeri F, Degarte L, Nespoli L, Gianotti L, et al.

Bleeding in hepatic surgery: sorting through methods to prevent it. HBP Surg.

(2012) 2012:169351. doi: 10.1155/2012/169351

Frontiers in Surgery | www.frontiersin.org

June 2021 | Volume 8 | Article 661064

Dang et al.

Partial Hepatectomy and Microwave Surgical Devices

23. Dang KT, Naka S, Nguyen VQ, Yamada A, Tani T. Functional evaluation of a

novel microwave surgical device in a canine splenectomy model. J Invest Surg.

(2019) 34:164–71. doi: 10.1080/08941939.2019.1619884

24. Hopper K, Powell LL. Basics of mechanical ventilation for

dogs and cats. Vet Clin North Am Small Anim Pract. (2013)

43:955–69. doi: 10.1016/j.cvsm.2013.03.009

25. Thornton JA. Estimation of blood loss during surgery. Ann R Coll Surg Engl.

(1963) 33:164–74.

26. Rau HG, Duessel AP, Wurzbacher S. The use of water-jet

dissection in open and laparoscopic liver resection. HPB. (2008)

10:275–80. doi: 10.1080/13651820802167706

27. Bodzin AS, Leiby BE, Ramirez CG, Frank AM, Doria C. Liver

resection using cavitron ultrasonic surgical aspirator (CUSA) versus

harmonic scalpel: a retrospective cohort study. Int J Surg. (2014)

12:500–3. doi: 10.1016/j.ijsu.2014.02.007

28. Oba A, Ishizawa T, Mise Y, Inoue Y, Ito H, Ono Y, et al. Possible

underestimation of blood loss during laparoscopic hepatectomy. BJS Open.

(2019) 3:336–43. doi: 10.1002/bjs5.50145

29. Brace CL. Microwave tissue ablation: biophysics, technology

and

applications.

Crit

Rev

Biomed

Eng.

(2010)

38:65–

78. doi: 10.1615/CritRevBiomedEng.v38.i1.60

30. Li M, Zhang W, Li Y, Li P, Li J, Gong J, et al. Radiofrequency-assisted

versus clamp-crushing parenchyma transection in cirrhotic patients with

hepatocellular carcinoma: a randomized clinical trial. Dig Dis Sci. (2013)

58:835–40. doi: 10.1007/s10620-012-2394-y

11. Koffron AJ, Stein JA. Laparoscopic liver surgery: parenchymal

transection using saline-enhanced electrosurgery. HPB. (2008)

10:225–8. doi: 10.1080/13651820802166864

12. Scatton O, Brustia R, Belli G, Pekolj J, Wakabayashi G, Gayet B. What

kind of energy devices should be used for laparoscopic liver resection?

Recommendations from a systematic review. J Hepatobiliary Pancreat Sci.

(2015) 22:327–34. doi: 10.1002/jhbp.213

13. Poon RTP. Current techniques of liver transection. HPB. (2007) 9:166–

73. doi: 10.1080/13651820701216182

14. Huntington JT, Royall NA, Schmidt CR. Minimizing blood loss

during hepatectomy: a literature review. J Surg Oncol. (2014)

109:81–8. doi: 10.1002/jso.23455

15. Lesurtel M, Selzner M, Petrowsky H, McCormack L, Clavien PA. How should

transection of the liver be performed a prospective randomized study in

100 consecutive patients comparing four different transection strategies. Ann

Surg. (2005) 242:814–22. doi: 10.1097/01.sla.0000189121.35617.d7

16. Hope WW, Padma S, Newcomb WL, Schmelzer TM, Heath JJ,

Lincourt AE, et al. An evaluation of electrosurgical vessel-sealing

devices in biliary tract surgery in a porcine model. HPB. (2010)

12:703–8. doi: 10.1111/j.1477-2574.2010.00240.x

17. Gotohda N, Yamanaka T, Saiura A, Uesaka K, Hashimoto M, Konishi

M, et al. Impact of energy devices during liver parenchymal transection:

a multicenter randomized controlled trial. World J Surg. (2015) 39:1543–

49. doi: 10.1007/s00268-015-2967-y

18. Aragon RJ, Solomon NL. Techniques of hepatic resection. J Gastrointest Oncol.

(2012) 3:28–40. doi: 10.3978/j.issn.2078-6891.2012.006

19. Tani T, Naka S, Murakami K, Higashiguchi T, Tani S, Akabori H, et al.

Comparative study between newly developed microwave surgical devices and

commercialized energy devices in animal model. Tan Sui. (2016) 37:581–88.

Available online at: http://www.igakutosho.co.jp/magazine/t_s/2016/zt3706.

html

20. Tani T, Naka S, Tani S, Shiomi H, Murakami K, Yamada A, et al. The invention

of microwave surgical scissors for seamless coagulation and cutting. Surg

Today. (2018) 48:856–64. doi: 10.1007/s00595-018-1662-7

21. Nguyen VQ, Tani T, Naka S, Yamada A, Murakami K. Thermal tissue change

induced by a microwave surgical instrument in a rat hepatectomy model. Am

J Surg. (2016) 211:189–96. doi: 10.1016/j.amjsurg.2015.07.008

22. Dang KT, Tani T, Naka S, Yamada A, Tani S. Comparative study of novel

microwave coagulation surgical instrument and currently commercialized

energy devices in an animal model. In: 7th International Conference on the

Development of Biomedical Engineering in Vietnam (BME7). Vietnam (2018).

Frontiers in Surgery | www.frontiersin.org

Conflict of Interest: TT was the inventor of the microwave surgical devices

(MWCX), and his company received royalties provided by intellectual property of

MWCX.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Dang, Naka, Yamada and Tani. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

June 2021 | Volume 8 | Article 661064

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る