リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Size-controlled in situ synthesis of metal–polymer nanocomposite films using a CO₂ laser」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Size-controlled in situ synthesis of metal–polymer nanocomposite films using a CO₂ laser

Kashihara, Kazuhiko Uto, Yuki Nakajima, Takashi 京都大学 DOI:10.1007/s00289-020-03481-0

2021

概要

In situ synthesis of metal–polymer nanocomposite films by irradiating a CO₂ laser for several seconds is a new alternative to fabricate metal–polymer nanocomposite films. The main features of this method are that the number density of the synthesized metal nanoparticles is very high so that the optical density easily exceeds 0.5 ~ 1.5 for the film thickness of ~ 200 nm, and owing to the short fabrication time and the use of non-focused laser beam, large-scale processing is possible. For this technique to be applicable for a variety of purposes, an important question is how and how much we can control the film properties. In this work, we demonstrate that the size and size distribution of metallic nanoparticles in the synthesized nanocomposite films can be well controlled by the choice of the laser power and irradiation time as well as the concentrations of nanoparticle precursor. Properties of the synthesized films can be roughly understood by considering the diffusion of metallic ions, atoms, and nanoparticles in the polymer film under the elevated temperature induced by the CO₂ laser.

この論文で使われている画像

参考文献

1.

Sih BC, Wolf MO (2005) Metal nanoparticle - Conjugated polymer nanocomposites. Chem Commun 3375–

3384. https://doi.org/10.1039/b501448d

2.

Jain PK, Huang X, El-sayed IH, El-sayed MA (2008) Noble Metals on the Nanoscale : Optical and

Photothermal Properties and Some Applications. Acc Chem Res 41:7–9. https://doi.org/10.1021/ar7002804

3.

Ramesh G V., Porel S, Radhakrishnan TP (2009) Polymer thin films embedded with in situ grown metal

nanoparticles. Chem Soc Rev 38:2646–2656. https://doi.org/10.1039/b815242j

4.

Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional

applications. Adv Eng Mater 12:1177–1190. https://doi.org/10.1002/adem.201000231

5.

Mir SH, Nagahara LA, Thundat T, et al (2018) Review—Organic-Inorganic Hybrid Functional Materials:

An

Integrated

Platform

for

Applied

Technologies.

Electrochem

Soc

165:B3137–B3156.

https://doi.org/10.1149/2.0191808jes

6.

Mbhele ZH, Salemane MG, Sittert CGCE Van, et al (2003) Fabrication and Characterization of Silver Polyvinyl Alcohol Nanocomposites. Chem Mater 15:5019–5024

7.

Khanna PK, Singh N, Charan S, et al (2005) Synthesis and characterization of Ag/PVA nanocomposite by

chemical

reduction

method.

Mater

Chem

Phys

93:117–121.

https://doi.org/10.1016/j.matchemphys.2005.02.029

8.

Xu P, Han X, Zhang B, et al (2014) Multifunctional polymer-metal nanocomposites via direct chemical

reduction by conjugated polymers. Chem Soc Rev 43:1349–1360. https://doi.org/10.1039/c3cs60380f

9.

Korchev AS, Bozack MJ, Slaten BL, Mills G (2004) Polymer-Initiated Photogeneration of Silver

Nanoparticles in SPEEK/PVA Films: Direct Metal Photopatterning. J Am Chem Soc 126:10–11.

https://doi.org/10.1021/ja037933q

10.

Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2006) Acceleration of Laser-Induced Formation of

14

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Gold Nanoparticles in a Poly ( vinyl alcohol ) Film. Langmuir 22:6361–6366

11.

Pucci A, Bernabò M, Elvati P, et al (2006) Photoinduced formation of gold nanoparticles into vinyl alcohol

based polymers. J Mater Chem 16:1058–1066. https://doi.org/10.1039/b511198f

12.

Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2007) Photochemical formation of Au/Cu bimetallic

nanoparticles with different shapes and sizes in a poly(vinyl alcohol) film. Adv Funct Mater 17:857–862.

https://doi.org/10.1002/adfm.200600700

13.

Lee CJ, Karim MR, Lee MS (2007) Synthesis and characterization of silver/thiophene nanocomposites by

UV-irradiation method. Mater Lett 61:2675–2678. https://doi.org/10.1016/j.matlet.2006.10.021

14.

Jiang T, Li J, Zhang L, et al (2014) Microwave assisted in situ synthesis of Ag-NaCMC films and their

reproducible surface-enhanced Raman scattering signals. J Alloys Compd 602:94–100

15.

Porel S, Singh S, Harsha SS, et al (2005) Nanoparticle-embedded polymer: In situ synthesis, free-standing

films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17:9–12.

https://doi.org/10.1021/cm0485963

16.

Karthikeyan B, Anija M, Phillip R (2006) In situ synthesis and nonlinear optical properties of Au:Ag

nanocomposite polymer films. Appl Phys Lett 88:053104. https://doi.org/10.1063/1.2168667

17.

Gradess R, Abargues R, Habbou A, et al (2009) Localized surface plasmon resonance sensor based on AgPVA nanocomposite thin films. J Mater Chem 19:9233–9240. https://doi.org/10.1039/b910020b

18.

Hariprasad E, Radhakrishnan TP (2013) In situ fabricated polymer-silver nanocomposite thin film as an

inexpensive and efficient substrate for surface-enhanced raman scattering. Langmuir 29:13050–13057.

https://doi.org/10.1021/la402594j

19.

Elashmawi IS, Menazea AA (2019) Different time ’ s Nd : YAG laser-irradiated PVA / Ag nanocomposites :

structural , optical , and electrical. J Mater Res Technol 8:1944–1951

20.

Kashihara K, Uto Y, Nakajima T (2018) Rapid in situ synthesis of polymer-metal nanocomposite films in

15

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

several seconds using a CO2 laser. Sci Rep 8:14719. https://doi.org/10.1038/s41598-018-33006-9

21.

Nishikawa H, Nakata E, Nakano S, et al (2019) Influence of polymer molecular weight on the properties of

in situ synthesized silver – methylcellulose nanocomposite films with a CO2 laser. J Mater Sci 55:2090–

2100. https://doi.org/10.1007/s10853-019-04149-5

22.

Maurya SK, Uto Y, Kashihara K, et al (2018) Rapid formation of nanostructures in Au films using a CO2

laser. Appl Surf Sci 427:961–965. https://doi.org/10.1016/j.apsusc.2017.09.044

23.

Faniayeu I, Ishimatsu Y, Nakajima T (2019) Surface plasmon resonance tuning of Ag nanoisland films

using a CO2 laser. J Phys D Appl Phys 52:1–8. https://doi.org/10.1088/1361-6463/ab1b7b

24.

Chen C, Li J, Luo G, et al (2012) Size-controlled in situ synthesis and photo-responsive properties of

silver/poly(methyl methacrylate) nanocomposite films with high silver content. Appl Surf Sci 258:10180–

10184. https://doi.org/10.1016/j.apsusc.2012.06.102

25.

Abyaneh MK, Paramanik D, Varma S, et al (2007) Formation of gold nanoparticles in

polymethylmethacrylate

by

UV

irradiation.

Phys

Appl

Phys

40:3771–3779.

https://doi.org/10.1088/0022-3727/40/12/032

26.

Spano F, Massaro A, Blasi L, et al (2012) In situ formation and size control of gold nanoparticles into

chitosan

for

nanocomposite

surfaces

with

tailored

wettability.

Langmuir

28:3911–3917.

https://doi.org/10.1021/la203893h

27.

Torrell M, Cunha L, Cavaleiro A, et al (2010) Functional and optical properties of Au:TiO 2 nanocomposite

films:

The

influence

of

thermal

annealing.

Appl

Surf

Sci

256:6536–6542.

https://doi.org/10.1016/j.apsusc.2010.04.043

28.

Torrell M, Kabir R, Cunha L, et al (2011) Tuning of the surface plasmon resonance in TiO2/Au thin films

grown by magnetron sputtering: The

effect of thermal annealing. J Appl Phys 109:1–9.

https://doi.org/10.1063/1.3565066

16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

29.

Takele H, Greve H, Pochstein C, et al (2006) Plasmonic properties of Ag nanoclusters in various polymer

matrices. Nanotechnology 17:3499–3505. https://doi.org/10.1088/0957-4484/17/14/023

30.

Takele H, Jebril S, Strunskus T, et al (2008) Tuning of electrical and structural properties of metal-polymer

nanocomposite films prepared by co-evaporation technique. Appl Phys A Mater Sci Process 92:345–350.

https://doi.org/10.1007/s00339-008-4524-0

31.

Beyene HT, Chakravadhanula VSK, Hanisch C, et al (2010) Preparation and plasmonic properties of

polymer-based composites containing Ag-Au alloy nanoparticles produced by vapor phase co-deposition. J

Mater Sci 45:5865–5871. https://doi.org/10.1007/s10853-010-4663-5

32.

Schürmann U, Hartung W, Takele H, et al (2005) Controlled syntheses of Ag-polytetrafluoroethylene

nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16:1078–1082.

https://doi.org/10.1088/0957-4484/16/8/014

33.

Avasthi DK, Mishra YK, Kabiraj D, et al (2007) Synthesis of metal-polymer nanocomposite for optical

applications. Nanotechnology 18:. https://doi.org/10.1088/0957-4484/18/12/125604

34.

Hourd AC, Baker RT, Abdolvand A (2015) Structural characterisation of printable noble metal/poly(vinylalcohol)

nanocomposites

for

optical

applications.

Nanoscale

7:13537–13546.

https://doi.org/10.1039/c5nr03636d

35.

Paeng D, Lee D, Grigoropoulos CP (2014) Characteristic time scales of coalescence of silver nanocomposite

and nanoparticle films induced by continuous wave laser irradiation. Appl Phys Lett 105:1–5.

https://doi.org/10.1063/1.4893465

36.

Sahu P, Prasad BLV (2013) Fine control of nanoparticle sizes and size distributions: Temperature and ligand

effects on the digestive ripening process. Nanoscale 5:1768–1771. https://doi.org/10.1039/c2nr32855k

17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る