リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR

Arzamasov, Aleksandr A. Nakajima, Aruto Sakanaka, Mikiyasu Ojima, Miriam N. Katayama, Takane Rodionov, Dmitry A. Osterman, Andrei L. 京都大学 DOI:10.1128/msystems.00343-22

2022.10.26

概要

ABSTRACT
Bifidobacterium longum subsp. infantis is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B. longum subsp. infantis; however, the regulatory mechanisms governing the expression of these catabolic pathways remain poorly understood. A bioinformatic regulon reconstruction approach used in this study implicated NagR, a transcription factor from the ROK family, as a negative global regulator of gene clusters encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tet- raose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. longum subsp. infantis. This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation and experimental assessment of binding of recombinant NagR to predicted DNA operators. The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR tran- scriptional effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages revealed multiple potential regulon expansion events, suggesting evolution from a local reg- ulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling the utilization of mixtures of GlcNAc-containing host glycans in B. longum subsp. infantis and Bifidobacterium bifidum.

IMPORTANCE
The predominance of bifidobacteria in the gut of breastfed infants is attrib- uted to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). Thus, individual HMOs such as lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are considered promising prebiotics that would stimulate the growth of bifidobacteria and confer multiple health benefits to preterm and malnourished children suffering from impaired (stunted) gut microbiota development. However, the rational selection of HMO-based prebiotics is hampered by the incomplete knowledge of regulatory mecha- nisms governing HMO utilization in target bifidobacteria. This study describes NagR-medi- ated transcriptional regulation of LNT and LNnT utilization in Bifidobacterium longum subsp. infantis. The elucidated regulatory network appears optimally adapted to simultaneous utili- zation of multiple HMOs, providing a rationale to add HMO mixtures (rather than individual components) to infant formulas. The study also provides insights into the evolution- ary trajectories of complex regulatory networks controlling carbohydrate metabolism in bifidobacteria.

KEYWORDS
bifidobacteria, HMO, regulon, comparative genomics, evolution, prebiotics, transcription factor, carbohydrate metabolism

この論文で使われている画像

関連論文

参考文献

1. Alessandri G, van Sinderen D, Ventura M. 2021. The genus Bifidobacterium: from genomics to functionality of an important component of the mamma- lian gut microbiota. Comput Struct Biotechnol J 19:1472–1487. https://doi.org/ 10.1016/j.csbj.2021.03.006.

2. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, Lernmark Å, Hagopian WA, Rewers MJ, She J-X, Toppari J, Ziegler A-G, Akolkar B, Krischer JP, Stewart CJ, Ajami NJ, Petrosino JF, Gevers D, Lähdesmäki H, Vlamakis H, Huttenhower C, Xavier RJ. 2018. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562:589–594. https://doi.org/10.1038/s41586-018-0620-2.

3. Taft DH, Lewis ZT, Nguyen N, Ho S, Masarweh C, Dunne-Castagna V, Tancredi DJ, Huda MN, Stephensen CB, Hinde K, von Mutius E, Kirjavainen PV, Dalphin J-C, Lauener R, Riedler J, Smilowitz JT, German JB, Morrow AL, Mills DA. 2022. Bifidobacterium species colonization in infancy: a global cross-sectional com- parison by population history of breastfeeding. Nutrients 14:1423. https://doi.org/10.3390/nu14071423.

4. Olm MR, Dahan D, Carter MM, Merrill BD, Yu FB, Jain S, Meng X, Tripathi S, Wastyk H, Neff N, Holmes S, Sonnenburg ED, Jha AR, Sonnenburg JL. 2022. Ro- bust variation in infant gut microbiome assembly across a spectrum of life- styles. Science 376:1220–1223. https://doi.org/10.1126/science.abj2972.

5. Ojima MN, Jiang L, Arzamasov AA, Yoshida K, Odamaki T, Xiao J, Nakajima A, Kitaoka M, Hirose J, Urashima T, Katoh T, Gotoh A, van Sinderen D, Rodionov DA, Osterman AL, Sakanaka M, Katayama T. 2022. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosac- charides. ISME J 16:2265–2279. https://doi.org/10.1038/s41396-022-01270-3.

6. Raman AS, Gehrig JL, Venkatesh S, Chang H-W, Hibberd MC, Subramanian S, Kang G, Bessong PO, Lima AAM, Kosek MN, Petri WA, Rodionov DA, Arzamasov AA, Leyn SA, Osterman AL, Huq S, Mostafa I, Islam M, Mahfuz M, Haque R, Ahmed T, Barratt MJ, Gordon JI. 2019. A sparse covarying unit that describes healthy and impaired human gut microbiota develop- ment. Science 365:eaau4735. https://doi.org/10.1126/science.aau4735.

7. Gehrig JL, Venkatesh S, Chang H-W, Hibberd MC, Kung VL, Cheng J, Chen RY, Subramanian S, Cowardin CA, Meier MF, O’Donnell D, Talcott M, Spears LD, Semenkovich CF, Henrissat B, Giannone RJ, Hettich RL, Ilkayeva O, Muehlbauer M, Newgard CB, Sawyer C, Head RD, Rodionov DA, Arzamasov AA, Leyn SA, Osterman AL, Hossain MI, Islam M, Choudhury N, Sarker SA, Huq S, Mahmud I, Mostafa I, Mahfuz M, Barratt MJ, Ahmed T, Gordon JI. 2019. Effects of micro- biota-directed foods in gnotobiotic animals and undernourished children. Sci- ence 365:eaau4732. https://doi.org/10.1126/science.aau4732.

8. Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, Xu G, Davis JCC, Lebrilla CB, Henrick BM, Freeman SL, Barile D, German JB, Mills DA, Smilowitz JT, Underwood MA. 2017. Persistence of supplemented Bifidobacte- rium longum subsp. infantis EVC001 in breastfed infants. mSphere 2:e00501-17. https://doi.org/10.1128/mSphere.00501-17.

9. Casaburi G, Duar RM, Vance DP, Mitchell R, Contreras L, Frese SA, Smilowitz JT, Underwood MA. 2019. Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria. Antimicrob Resist Infect Control 8:131. https://doi.org/10.1186/s13756-019-0583-6.

10. Hirano R, Sakanaka M, Yoshimi K, Sugimoto N, Eguchi S, Yamauchi Y, Nara M, Maeda S, Ami Y, Gotoh A, Katayama T, Iida N, Kato T, Ohno H, Fukiya S, Yokota A, Nishimoto M, Kitaoka M, Nakai H, Kurihara S. 2021. Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing Clostridioides difficile. Gut Microbes 13:1973835. https://doi.org/10.1080/19490976.2021.1973835.

11. Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D, Moll JM, Pekmez CT, Rivollier A, Michaelsen KF, Mølgaard C, Lind MV, Dragsted LO, Katayama T, Frandsen HL, Vinggaard AM, Bahl MI, Brix S, Agace W, Licht TR, Roager HM. 2021. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol 6:1367–1382. https://doi.org/10.1038/s41564-021-00970-4.

12. Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, Olin A, Wang J, Mikes J, Tan Z, Chen Y, Ehrlich AM, Bernhardsson AK, Mugabo CH, Ambrosiani Y, Gustafsson A, Chew S, Brown HK, Prambs J, Bohlin K, Mitchell RD, Underwood MA, Smilowitz JT, German JB, Frese SA, Brodin P. 2021. Bifidobacteria-mediated immune system imprinting early in life. Cell 184:3884–3898.e11. https://doi.org/10.1016/j.cell.2021.05.030.

13. Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, Lawson MAE, Kiu R, Leclaire C, Chalklen L, Kujawska M, Mitra S, Fardus-Reid F, Belteki G, McColl K, Swann JR, Kroll JS, Clarke P, Hall LJ. 2020. Microbiota supplementation with Bifi- dobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep Med 1:100077. https://doi.org/10.1016/j.xcrm.2020.100077.

14. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, Barratt MJ, VanArendonk LG, Zhang Q, Province MA, Petri WA, Ahmed T, Gordon JI. 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417–421. https:// doi.org/10.1038/nature13421.

15. Barratt MJ, Nuzhat S, Ahsan K, Frese SA, Arzamasov AA, Sarker SA, Islam MM, Palit P, Islam MR, Hibberd MC, Nakshatri S, Cowardin CA, Guruge JL, Byrne AE, Venkatesh S, Sundaresan V, Henrick B, Duar RM, Mitchell RD, Casaburi G, Prambs J, Flannery R, Mahfuz M, Rodionov DA, Osterman AL, Kyle D, Ahmed T, Gordon JI. 2022. Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition. Sci Transl Med 14:eabk1107. https://doi.org/10.1126/scitranslmed.abk1107.

16. Bajorek S, Duar RM, Corrigan M, Matrone C, Winn KA, Norman S, Mitchell RD, Cagney O, Aksenov AA, Melnik AV, Kopylova E, Perez J. 2021. B. infantis EVC001 is well-tolerated and improves human milk oligosaccharide utilization in preterm infants in the neonatal intensive care unit. Front Pediatr 9:795970. https://doi.org/10.3389/fped.2021.795970.

17. Nguyen M, Holdbrooks H, Mishra P, Abrantes MA, Eskew S, Garma M, Oca C-G, McGuckin C, Hein CB, Mitchell RD, Kazi S, Chew S, Casaburi G, Brown HK, Frese SA, Henrick BM. 2021. Impact of probiotic B. infantis EVC001 feeding in premature infants on the gut microbiome, nosocomially acquired antibiotic resistance, and enteric inflammation. Front Pediatr 9: 618009. https://doi.org/10.3389/fped.2021.618009.

18. Tannock GW, Lawley B, Munro K, Gowri Pathmanathan S, Zhou SJ, Makrides M, Gibson RA, Sullivan T, Prosser CG, Lowry D, Hodgkinson AJ. 2013. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol 79:3040–3048. https://doi.org/10.1128/AEM.03910-12.

19. De Leoz MLA, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA, German JB, Mills DA, Lebrilla CB. 2015. Human milk glycomics and gut mi- crobial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J Pro- teome Res 14:491–502. https://doi.org/10.1021/pr500759e.

20. Jones RB, Berger PK, Plows JF, Alderete TL, Millstein J, Fogel J, Iablokov SN, Rodionov DA, Osterman AL, Bode L, Goran MI. 2020. Lactose-reduced infant formula with added corn syrup solids is associated with a distinct gut micro- biota in Hispanic infants. Gut Microbes 12:1813534. https://doi.org/10.1080/ 19490976.2020.1813534.

21. Berger B, Porta N, Foata F, Grathwohl D, Delley M, Moine D, Charpagne A, Siegwald L, Descombes P, Alliet P, Puccio G, Steenhout P, Mercenier A, SprengerN. 2020. Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. mBio 11:e03196-19. https://doi.org/10.1128/ mBio.03196-19.

22. Bode L. 2012. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22:1147–1162. https://doi.org/10.1093/glycob/cws074.

23. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. 2000. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722. https://doi.org/10.1146/annurev.nutr.20.1.699.

24. Chen X. 2015. Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis. Adv Carbohydr Chem Biochem 72: 113–190. https://doi.org/10.1016/bs.accb.2015.08.002.

25. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M. 2011. Physiology of consump- tion of human milk oligosaccharides by infant gut-associated bifidobacte- ria. J Biol Chem 286:34583–34592. https://doi.org/10.1074/jbc.M111.248138.

26. James K, Motherway MO, Bottacini F, van Sinderen D. 2016. Bifidobacte- rium breve UCC2003 metabolises the human milk oligosaccharides lacto- N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep 6:38560. https://doi.org/10.1038/srep38560.

27. Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, Kodama H, Yamamoto K, Yamada T, Matsumoto S, Kurokawa K. 2016. A key genetic factor for fucosyllactose utilization affects infant gut microbiota devel- opment. Nat Commun 7:11939. https://doi.org/10.1038/ncomms11939.

28. Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, Ugalde JA, German JB, Lebrilla CB, Mills DA. 2016. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep 6:35045. https://doi.org/10.1038/srep35045.

29. Yamada C, Gotoh A, Sakanaka M, Hattie M, Stubbs KA, Katayama-Ikegami A, Hirose J, Kurihara S, Arakawa T, Kitaoka M, Okuda S, Katayama T, Fushinobu S. 2017. Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chem Biol 24:515–524.e5. https://doi.org/10.1016/j.chembiol.2017.03.012.

30. Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J, Sakata K, Yamanoi T, Kumagai H, Yamamoto K. 2004. Molecular cloning and characterization of Bifi- dobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosi- dase (glycoside hydrolase family 95). J Bacteriol 186:4885–4893. https://doi.org/ 10.1128/JB.186.15.4885-4893.2004.

31. Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M, Yamaguchi M, Kumagai H, Katayama T, Yamamoto K. 2008. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74:3996–4004. https://doi.org/10.1128/ AEM.00149-08.

32. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K. 2009. Two distinct alpha-L-fucosidases from Bifidobacte- rium bifidum are essential for the utilization of fucosylated milk oligosac- charides and glycoconjugates. Glycobiology 19:1010–1017. https://doi.org/10.1093/glycob/cwp082.

33. Miwa M, Horimoto T, Kiyohara M, Katayama T, Kitaoka M, Ashida H, YamamotoK. 2010. Cooperation of b-galactosidase and b-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 struc- ture. Glycobiology 20:1402–1409. https://doi.org/10.1093/glycob/cwq101.

34. Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, YamamotoK. 2011. An exo-alpha-sialidase from bifidobacteria involved in the degra- dation of sialyloligosaccharides in human milk and intestinal glycoconju- gates. Glycobiology 21:437–447. https://doi.org/10.1093/glycob/cwq175.

35. Nishiyama K, Nagai A, Uribayashi K, Yamamoto Y, Mukai T, Okada N. 2018. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifido- bacterium breve. Anaerobe 52:22–28. https://doi.org/10.1016/j.anaerobe.2018.05.007.

36. Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao J-Z, Kitaoka M, Katayama T. 2019. Varied pathways of infant gut-associated Bifidobac- terium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients 12:71. https://doi.org/10.3390/nu12010071.

37. Button JE, Autran CA, Reens AL, Cosetta CM, Smriga S, Ericson M, Pierce JV, Cook DN, Lee ML, Sun AK, Alousi AM, Koh AY, Rechtman DJ, Jenq RR, McKenzie GJ. 2022. Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics. Cell Host Microbe 30:712–725.e7. https://doi.org/10.1016/j.chom.2022.04.001.

38. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 105:18964–18969. https://doi.org/10.1073/pnas.0809584105.

39. Garrido D, Kim JH, German JB, Raybould HE, Mills DA. 2011. Oligosaccha- ride binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 6:e17315. https://doi.org/10.1371/ journal.pone.0017315.

40. Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, Yachi H, Sugiyama Y, Kurihara S, Hirose J, Urashima T, Xiao J-Z, Kitaoka M, Fukiya S, Yokota A, Lo Leggio L, Abou Hachem M, Katayama T. 2019. Evolutionary adap- tation in fucosyllactose uptake systems supports bifidobacteria-infant symbio- sis. Sci Adv 5:eaaw7696. https://doi.org/10.1126/sciadv.aaw7696.

41. Sela DA, Li Y, Lerno L, Wu S, Marcobal AM, German JB, Chen X, Lebrilla CB, Mills DA. 2011. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem 286:11909–11918. https://doi.org/10.1074/jbc.M110.193359.

42. Garrido D, Ruiz-Moyano S, Mills DA. 2012. Release and utilization of N-ace- tyl-d-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe 18:430–435. https://doi.org/10.1016/j.anaerobe.2012.04.012.

43. Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom H-J, Joachimiak A, Lebrilla CB, Mills DA. 2012. Bifidobacterium longum subsp. infantis ATCC 15697 a-fucosi- dases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol 78:795–803. https://doi.org/10.1128/AEM.06762-11.

44. Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H. 2012. Bifidobacterium longum subsp. infantis uses two different b-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22:361–368. https://doi.org/10.1093/glycob/cwr116.

45. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA. 2015. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5: 13517. https://doi.org/10.1038/srep13517.

46. Özcan E, Sela DA. 2018. Inefficient metabolism of the human milk oligo- saccharides lacto-N-tetraose and lacto-N-neotetraose shifts Bifidobacte- rium longum subsp. infantis physiology. Front Nutr 5. https://doi.org/10.3389/fnut.2018.00046.

47. Ravcheev DA, Godzik A, Osterman AL, Rodionov DA. 2013. Polysaccharides utili- zation in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics 14:873. https://doi.org/10.1186/1471-2164-14-873.

48. Khoroshkin MS, Leyn SA, Van Sinderen D, Rodionov DA. 2016. Transcriptional regulation of carbohydrate utilization pathways in the Bifidobacterium genus. Front Microbiol 7:120. https://doi.org/10.3389/fmicb.2016.00120.

49. Rodionov DA, Rodionova IA, Rodionov VA, Arzamasov AA, Zhang K, Rubinstein GM, Tanwee TNN, Bing RG, Crosby JR, Nookaew I, Basen M, Brown SD, Wilson CM, Klingeman DM, Poole FL, Zhang Y, Kelly RM, Adams MWW. 2021. Transcrip- tional regulation of plant biomass degradation and carbohydrate utilization genes in the extreme thermophile Caldicellulosiruptor bescii. mSystems 6: e0134520. https://doi.org/10.1128/mSystems.01345-20.

50. James K, O'Connell Motherway M, Penno C, O'Brien RL, van Sinderen D. 2018. Bifidobacterium breve UCC2003 employs multiple transcriptional regulators to control metabolism of particular human milk oligosaccharides. Appl Environ Microbiol 84:e02774-17. https://doi.org/10.1128/AEM.02774-17.

51. Kazanov MD, Li X, Gelfand MS, Osterman AL, Rodionov DA. 2013. Func- tional diversification of ROK-family transcriptional regulators of sugar ca- tabolism in the Thermotogae phylum. Nucleic Acids Res 41:790–803. https://doi.org/10.1093/nar/gks1184.

52. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor pack- age for differential expression analysis of digital gene expression data. Bioin- formatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616.

53. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microar- ray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007. Func- tional diversification of ROK-family transcriptional regulators of sugar ca- tabolism in the Thermotogae phylum. Nucleic Acids Res 41:790–803. https://doi.org/10.1093/nar/gks1184.

52. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor pack- age for differential expression analysis of digital gene expression data. Bioin- formatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616.

53. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microar- ray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007.

54. Warchol M, Perrin S, Grill J-P, Schneider F. 2002. Characterization of a purified beta-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett Appl Microbiol 35:462–467. https://doi.org/10.1046/j.1472-765x.2002.01224.x.

55. Ojima MN, Asao Y, Nakajima A, Katoh T, Kitaoka M, Gotoh A, Hirose J, Urashima T, Fukiya S, Yokota A, Abou Hachem M, Sakanaka M, Katayama T. 2022. Diversification of a fucosyllactose transporter within the genus Bifido- bacterium. Appl Environ Microbiol 88:e01437-21. AEM0143721. https://doi.org/10.1128/AEM.01437-21.

56. Turroni F, Bottacini F, Foroni E, Mulder I, Kim J-H, Zomer A, Sánchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Fitzgerald GF, Mills D, Margolles A, Kelly D, van Sinderen D, VenturaM. 2010. Genome analysis of Bifidobacterium bifidum PRL2010 reveals meta- bolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 107: 19514–19519. https://doi.org/10.1073/pnas.1011100107.

57. Plumbridge JA. 1991. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Mol Microbiol 5:2053–2062. https://doi.org/10.1111/j.1365-2958.1991.tb00828.x.

58. Plumbridge J, Kolb A. 1991. CAP and Nag repressor binding to the regula- tory regions of the nagE-B and manX genes of Escherichia coli. J Mol Biol 217:661–679. https://doi.org/10.1016/0022-2836(91)90524-A.

59. Nishimoto M, Kitaoka M. 2007. Identification of n-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifido- bacterium longum. Appl Environ Microbiol 73:6444–6449. https://doi.org/10.1128/AEM.01425-07.

60. Stiers KM, Muenks AG, Beamer LJ. 2017. Biology, mechanism, and struc- ture of enzymes in the a-D-phosphohexomutase superfamily. Adv Pro- tein Chem Struct Biol 109:265–304. https://doi.org/10.1016/bs.apcsb.2017.04.005.

61. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. 2008. Cyto- plasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 168–207. https://doi.org/10.1111/j.1574-6976.2008.00104.x.

62. Garrido D, Nwosu C, Ruiz-Moyano S, Aldredge D, German JB, Lebrilla CB, Mills DA. 2012. Endo-b-N-acetylglucosaminidases from infant gut-associated bifi- dobacteria release complex N-glycans from human milk glycoproteins. Mol Cell Proteomics 11:775–785. https://doi.org/10.1074/mcp.M112.018119.

63. Kitaoka M, Tian J, Nishimoto M. 2005. Novel putative galactose operon involv- ing lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol 71:3158–3162. https://doi.org/10.1128/AEM.71.6.3158-3162.2005.

64. Suzuki R, Wada J, Katayama T, Fushinobu S, Wakagi T, Shoun H, Sugimoto H, Tanaka A, Kumagai H, Ashida H, Kitaoka M, Yamamoto K. 2008. Struc- tural and thermodynamic analyses of solute-binding protein from Bifido- bacterium longum specific for core 1 disaccharide and lacto-N-biose I. J Biol Chem 283:13165–13173. https://doi.org/10.1074/jbc.M709777200.

65. Xiao J, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T, Iwatsuki K, KitaokaM. 2010. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 76:54–59. https://doi.org/10.1128/AEM.01683-09.

66. Shani G, Hoeflinger JL, Heiss BE, Masarweh CF, Larke JA, Jensen NM, Wickramasinghe S, Davis JC, Goonatilleke E, El-Hawiet A, Nguyen L, Klassen JS, Slupsky CM, Lebrilla CB, Mills DA. 2022. Fucosylated human milk oligosaccha- ride foraging within the species Bifidobacterium pseudocatenulatum is driven by glycosyl hydrolase content and specificity. Appl Environ Microbiol 88: e01707-21. https://doi.org/10.1128/AEM.01707-21.

67. Leyn SA, Li X, Zheng Q, Novichkov PS, Reed S, Romine MF, Fredrickson JK, Yang C, Osterman AL, Rodionov DA. 2011. Control of proteobacterial cen- tral carbon metabolism by the HexR transcriptional regulator. J Biol Chem 286:35782–35794. https://doi.org/10.1074/jbc.M111.267963.

68. Ravcheev DA, Khoroshkin MS, Laikova ON, Tsoy OV, Sernova NV, Petrova SA, Rakhmaninova AB, Novichkov PS, Gelfand MS, Rodionov DA. 2014. Com- parative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol 5:294. https://doi.org/10.3389/fmicb.2014.00294.

69. Arzamasov AA, van Sinderen D, Rodionov DA. 2018. Comparative genomics reveals the regulatory complexity of bifidobacterial arabinose and arabino- oligosaccharide utilization. Front Microbiol 9:776. https://doi.org/10.3389/ fmicb.2018.00776.

70. Lanigan N, Kelly E, Arzamasov AA, Stanton C, Rodionov DA, van SinderenD. 2019. Transcriptional control of central carbon metabolic flux in bifido- bacteria by two functionally similar, yet distinct LacI-type regulators. Sci Rep 9:17851. https://doi.org/10.1038/s41598-019-54229-4.

71. Egan M, Jiang H, O'Connell Motherway M, Oscarson S, van Sinderen D. 2016. Glycosulfatase-encoding gene cluster in Bifidobacterium breve UCC2003. Appl Environ Microbiol 82:6611–6623. https://doi.org/10.1128/AEM.02022-16.

72. Katoh T, Maeshibu T, Kikkawa K-I, Gotoh A, Tomabechi Y, Nakamura M, Liao W-H, Yamaguchi M, Ashida H, Yamamoto K, Katayama T. 2017. Identi- fication and characterization of a sulfoglycosidase from Bifidobacterium bifidum implicated in mucin glycan utilization. Biosci Biotechnol Biochem 81:2018–2027. https://doi.org/10.1080/09168451.2017.1361810.

73. Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA. 2010. RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res 38: D111–D118. https://doi.org/10.1093/nar/gkp894.

74. Mironov AA, Vinokurova NP, Gelfand MS. 2000. Software for analysis of bacte- rial genomes. Mol Biol 34:222–231. https://doi.org/10.1007/BF02759643.

75. Rodionov DA. 2007. Comparative genomic reconstruction of transcrip- tional regulatory networks in bacteria. Chem Rev 107:3467–3497. https://doi.org/10.1021/cr068309.

76. Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188–1190. https://doi.org/10.1101/gr.849004.

77. Bottacini F, Zomer A, Milani C, Ferrario C, Lugli GA, Egan M, Ventura M, van Sinderen D. 2017. Global transcriptional landscape and promoter mapping of the gut commensal Bifidobacterium breve UCC2003. BMC Genomics 18: 991. https://doi.org/10.1186/s12864-017-4387-x.

78. Kozakai T, Izumi A, Horigome A, Odamaki T, Xiao J, Nomura I, Suzuki T. 2020. Structure of a core promoter in Bifidobacterium longum NCC2705. J Bacteriol 202:e00540-19. https://doi.org/10.1128/JB.00540-19.

79. Erb I, González-Vallinas JR, Bussotti G, Blanco E, Eyras E, Notredame C. 2012. Use of ChIP-Seq data for the design of a multiple promoter-alignment method. Nucleic Acids Res 40:e52. https://doi.org/10.1093/nar/gkr1292.

80. Hirayama Y, Sakanaka M, Fukuma H, Murayama H, Kano Y, Fukiya S, Yokota A. 2012. Development of a double-crossover markerless gene de- letion system in Bifidobacterium longum: functional analysis of the a-ga- lactosidase gene for raffinose assimilation. Appl Environ Microbiol 78: 4984–4994. https://doi.org/10.1128/AEM.00588-12.

81. Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI. 2010. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285:22082–22090. https://doi.org/10.1074/jbc.M110.117713.

82. Amorim CF, Novais FO, Nguyen BT, Misic AM, Carvalho LP, Carvalho EM, Beiting DP, Scott P. 2019. Variable gene expression and parasite load pre- dict treatment outcome in cutaneous leishmaniasis. Sci Transl Med 11: eaax4204. https://doi.org/10.1126/scitranslmed.aax4204.

83. Ritz C, Baty F, Streibig JC, Gerhard D. 2015. Dose-response analysis usingR. PLoS One 10:e0146021. https://doi.org/10.1371/journal.pone.0146021.

84. O'Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. 2013. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol 6:67–79. https://doi.org/10.1111/1751-7915.12011.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る