リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem

Katoh, Toshihiko Yamada, Chihaya Wallace, Michael D. Yoshida, Ayako Gotoh, Aina Arai, Moe Maeshibu, Takako Kashima, Toma Hagenbeek, Arno Ojima, Miriam N. Takada, Hiromi Sakanaka, Mikiyasu Shimizu, Hidenori Nishiyama, Keita Ashida, Hisashi Hirose, Junko Suarez-Diez, Maria Nishiyama, Makoto Kimura, Ikuo Stubbs, Keith A. Fushinobu, Shinya Katayama, Takane 京都大学 DOI:10.1038/s41589-023-01272-y

2023.06

概要

Mucinolytic bacteria modulate host–microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.

この論文で使われている画像

参考文献

1203

46.

1204

1205

colonic mucins. Biosci Biotechnol Biochem 78, 1444–1451 (2014).

47.

1206

1207

Nishiyama, K. et al. Evaluation of bifidobacterial adhesion to acidic sugar chains of porcine

Yasui, K. et al. Improvement of bacterial transformation efficiency using plasmid artificial

modification. Nucleic Acids Res 37, e3–e3 (2009).

48.

Kozakai, T., Shimofusa, Y., Nomura, I. & Suzuki, T. Construction of a reporter system for

1208

bifidobacteria using chloramphenicol acetyltransferase and its application for evaluation of

1209

promoters and terminators. Biosci Microbiota Food Health 40, 115–122 (2021).

1210

49.

1211

1212

bifidobacteria-infant symbiosis. Sci Adv 5, eaaw7696 (2019).

50.

1213

1214

Sakanaka, M. et al. Evolutionary adaptation in fucosyllactose uptake systems supports

Kumagai, T., Katoh, T., Nix, D. B., Tiemeyer, M. & Aoki, K. In-gel β-elimination and aqueousorganic partition for improved O- and sulfoglycomics. Anal Chem 85, 8692–9 (2013).

51.

Minamisawa, T. & Hirabayashi, J. Fragmentations of isomeric sulfated monosaccharides using

1215

electrospray ion trap mass spectrometry. Rapid Commun Mass Spectrom 19, 1788–1796

1216

(2005).

1217

52.

1218

1219

Nat Methods 13, 581–583 (2016).

53.

1220

1221

1224

Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol 12, R60

(2011).

54.

1222

1223

Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data.

Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome

Biol 20, 257 (2019).

55.

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421

(2009).

37

1225

56.

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful

1226

approach to multiple testing. Journal of the Royal Statistical Society. Series B

1227

(Methodological) 57, 289–300 (1995).

1228

57.

1229

1230

Liu, J., Shikhman, A. R., Lotz, M. K. & Wong, C. H. Hexosaminidase inhibitors as new drug

candidates for the therapy of osteoarthritis. Chem Biol 8, 701–711 (2001).

58.

Yamada, C. et al. Molecular insight into evolution of symbiosis between breast-fed infants and

1231

a member of the human gut microbiome Bifidobacterium longum. Cell Chem Biol 24, 515-

1232

524.e5 (2017).

1233

59.

Sakurama, H. et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum

1234

subspecies longum shows unique substrate specificity and requires a designated chaperone for

1235

its active expression. J Biol Chem 288, 25194–25206 (2013).

1236

38

100

Non-sulfated O-glycans

Oral gavage

(PBS or B. bifidum 109 cells per day)

Relative intensity (%)

Acclimation 0

(Conv.)

779

5 (Day)

Dissection

PBS (n = 5)

Bb (n = 5)

954

983

50

100

*m/z 1100 (ES)

1158

1332

1228

1590

**

Sulfated O-glycans

**m/z 780 (ES)

50

1246

867 1041

Collect faeces

(Day 0)

Collect faeces

(Day 5)

1951

1764

500

1000

1420

1500

2000

2500

3000

m/z

Estimated amounts of glycans

(m/z) PBS Bb

0.05

1.5

Estimated glycan amounts

(nmol per 0.1 mg faecal extracts)

Non-sulfated

Sulfated

0.10

(nmol per 0.1 mg faecal extracts)

534

779

954

1025

1142

1199

1257

1332

1386

1433

1519

1590

1678

1748

1781

1835

2039

2196

1025

1071

1317

1491

1852

Bb

p = 0.97

0.5

40

p = 0.39

20

Fuc

Gal

GalNAc

−20

−40

PBS

p = 0.044

NeuAc

GlcNAc

GlcNAc-6S

Bb

p = 0.44

PBS

10

p = 0.025

Faeces

p = 0.68

Oligosaccharide length

GlcNAc-6S

(pmol per mg dry faeces)

p = 0.19

Relative abundance (%)

Relative abundance (%)

p = 0.055

p = 0.97

ρ = −0.74

p = 4.0 × 10−9

20

Sulfated

O-glycan

Caecum contents

60

40

Non-sulfated

O-glycan

Sulfated

O-glycans

Non-sulfated

O-glycans

PBS

p = 0.95

% to PBS control

Bb

Day

Day

GlcNAc-6S

0.15

ρ = 0.38

q = 0.017

p = 0.021

100

Infants

ρ = 0.40

p = 0.020

10−1

10−2

Adults

ρ = 0.24

p = 0.35

10−3

10−4

Flintibacter sp.

KGMB00164 (%)

Free GlcNAc-6S

(nmol per mg dry faeces)

101

0.10

0.05

0.00

10−5

102

103

104

105

106

107

108

109

bbhII

(Copy number per mg dry faeces)

0.000

0.001

bbhII homologs (%)

Katoh et al., Figure 1

5 (Day)

PBS

WT

B. bifidum

(109 cells per mouse)

Dissection

bbhII

Detection limit

PBS

GalNAc

NeuAc GlcNAc-6S

0.0

5.0

534

Detection

limit

0.0

0.5

1.0

534

Sulfated

1025

1158

534

895

(m/z)

(>0.20)

0.20

PBS-control (GF)

PBS

0.15

WT

1024

779

1228

895

1473

WT-mono-colonized

0.10

0.05

bbhII

534

100

1.5

Concentration

[nmol per caecal contents (g)]

* 1228 1473

Estimated amounts

(nmol per 0.1 mg faecal extracts)

bbhII-mono-colonized

500

1000

1500

2000

2500

3000

m/z

Sulfated O-glycans

867

100

**780 (ES)

1071

PBS-control (GF)

**

Non-sulfated

983

779 895

Sulfated

m/z 867

p = 0.036

p = 2.3 × 10−5

p = 0.0056

p = 0.015

15

p = 1.7 × 10−6

2.0

1.5

p = 5.7 × 10−5

p = 0.0009

1.5

10

1.0

1.0

0.5

0.5

0.0

0.0

PBS WT bbhII

PBS WT bbhII

PBS WT bbhII

100

MS/MS at m/z 867

**

WT-mono-colonized

100

867

**

1071

bbhII-mono-colonized

500

1000

1500

2000

m/z

2500

3000

Relative intensity (%)

Relative intensity (%)

(nmol per 0.1 mg

faecal extracts)

Relative intensity (%)

779

Estimated amounts of glycans

*1100 (ES)

1024 1402 1473

1228

709 895

15.0

Non-sulfated

983

100

10.0

Non-sulfated O-glycans

100

1607

GlcNAc

Detection

limit

Concentration

[nmol per caecal contents (g)]

Gal

GlcNAc-6S

Log [B. bifidum cell number per

caecal contents (g)]

p=

0.0036

1764

p=

0.0032

1403

p=

0.0002

p = 0.0018

1504

p = 0.027 p = 0.0032

ρ = 0.89

p = 1.0 × 10−8

1229

p = 0.0022

p=

0.0046

p=

0.0001

p=

0.0001

1332

p = 0.046

10

Fuc

p = 0.046

PBS

WT

bbhII

15

NeuAc

Log [B. bifidum cell number per

caecal contents (g)]

Concentrations

[nmol per caecal content (g)]

Monosaccharides in caecal contents

bbhII

WT

1607

1317

1474

1041

1923

Acclimation

(2 weeks)

2618

Germ-free mice

Log

[B. bifidum cell number per

caecal contents (g)]

Oral gavage

520

100

747

370

Glycan symbol

520

631

Gal

PI

867

50

370

650747

ol

GalNAc

631

GlcNAc

650

Sulfate

50

300

550

800

m/z

Katoh et al., Figure 2

GH20 catalytic domain

Ca2+

CBM32

N-domain

(46-197)

C-domain

(751-861)

W651

Q640

W607

V649

Y637

P639

W588

GlcNAc-6S

H688

W685

E553

(acid/base)

D552

(stabilizer)

E687

R358

Q640/

M396

W651/408

Y637/393

V649/

L406

W607/361

P639/

D395

W588/344

H688/

T455

E687/444

W685/442

D553/314

D552/313

R358/162

H467/250

Katoh et al., Figure 3

CBM32 N-domain

N126

K85

N89

Ca2+

R95

PUGNAc-6S

(Ki = 15.4 nM)

NAG-thiazoline-6S

(NAGT-6S)

(Ki = 52.3 nM)

W183

E62

PGM O-glycans

Q640

0 mM

NAGT-6S

w/o cultivation

W651

Y637

779

100

Non-sulfated

1041

100

708

1402

953

534

**

1420

867 1246 1491

E553

D552

R358

GH20 catalytic domain

1 mM

NAGT-6S

24 h cultivation

E687

Relative intensity (%)

W607

0 mM

NAGT-6S

24 h cultivation

W685

Sulfated

100 534

100

1402

953

**

1025

779

867

1041

1316

1491

708

100

534

867

100

779

1041

**

9531025

1402

708

400

1316

1491

1400

2400

400

1400

m/z

2400

m/z

Non-sulfated O-glycans

Sulfated O-glycans

2.0

50

m/z 1025

m/z 534

m/z 1332

m/z 953

m/z 1474

30

20

m/z 1402

m/z 708

10

m/z 779

0.1

24

NAGT-6S (mM)

Incubation time (h)

Glycan symbol

L-Fuc

Others

m/z 1316

m/z 867

m/z 1246

m/z 1287

m/z 1491

1.5

1.0

m/z 1420

Gal

GalNAc

0.5

m/z 1041

GlcNAc

Sulfate

0.1

24

Estimated glycan amounts

(nmol per 100 μg mucin protein)

Others

Estimated glycan amounts

(nmol per 100 μg mucin protein)

40

NAGT-6S (mM)

Incubation time (h)

Katoh et al., Figure 4

GlcNAc-6S

GlcNAc-6S

(GlcN)3

GlcNAc-Man

K85

N89

Ca2+

Ca2+

E62

W183

R95

N126

S97

T127

BbhII CBM32

Ca2+

Paenibacillus DD2

p < 0.0001

60

p < 0.0001

0.05

80

40

20

0.00

10

15

p < 0.0001

Binding (%)

A450

100

p < 0.0001

120

0.10

NagH CBM32-2

p = 0.00077

S184

20

Mucin (μg/ml)

PGM with CBM

PCM w/o CBM

PCM with CBM

pNP-β-GlcNAc-6S

Purified enzymes

PGM

Purified enzymes

Recombinant cells

p = 0.0006

20

10

0.008

0.006

0.004

0.002

0.000

p = 0.0184

2.0

Activity (s−1)

30

Activity (unit/OD600)

Activity (s−1)

40

p = 0.455

p < 0.0001

p < 0.0001

p = 0.935

50

Recombinant cells

1.5

1.0

0.5

0.0

p = 0.0001

Activity (unit/OD600)

PGM w/o CBM

0.00010

p < 0.0001

0.00008

0.00006

0.00004

0.00002

0.00000

Katoh et al., Figure 5

Number of mucCBM in muc-GH

30

20

abc

bc

abc

ab

10

bcd

cd

CGC64_00690

muc-GH with muc-CBM

per total muc-GH (%)

GH16_3

50

40

bc

30

20

bc

bc

19

(+)

10

(+)

12

(+)

(─)

10

Genome exam.

GH16_3

11

(─)

37

(─)

(+)

92

(+)

(+)

B. bifidum GH16

(ORF fragmented)

2.0

B. bifidum

GH

CBM

Crossfeeding

Goblet

cell

Selffeeding

Glycan symbol

CBM-dependent

breakdown

L-Fuc

Gal

GalNAc

GlcNAc

Mono-, disaccharides

Intestinal lumen

Mucus layer

Epithelial

cell

Sulfate

Katoh et al., Figure 6

Relative abundance

Relative abundance at family level of taxonomy

B. bifidumadministered

PBS control

Day 0

PBS control

B. bifidumadministered

Day 5

Linear discriminant analysis Effect Size (LEfSe)

f__Desulfovibrionaceae.g__

f__Desulfovibrionaceae.g__.s__

f__Rikenellaceae

f__Rikenellaceae.g__.s__

f__Rikenellaceae.g__

Bifidobacterium longum

g__Bacteroides.s__

p__Proteobacteria

o__Desulfovibrionales

f__Desulfovibrionaceae

c__Deltaproteobacteria

f__Bifidobacteriaceae

g__Bifidobacterium

c__Actinobacteria

o__Bifidobacteriales

f__S24_7.g__

f__S24_7.g__.s__

f__S24_7

o__Clostridiales

o__Clostridiales

o__Clostridiales

g__Parabacteroides.s__

g__Parabacteroides

f__Porphyromonadaceae

Linear Discriminant Analysis (LDA) Score (log 10)

Katoh et al., Extended Data Fig. 1

Relative abundance

Relative abundance at the family level of taxonomy

Post-cultivation

Pre-cultivation

GlcNAc-6Sadded

None-added

β-Diversity

Linear discriminant analysis Effect Size (LEfSe)

UniFrac (weighted)

None-added

GlcNAc-6S-added

0.3

f__Bacteroidaceae

g__Bacteroides

g__Clostridium

Clostridium hathewayi

PCo2 (24.5%)

0.2

0.1

Post-cultivation

GlcNAc-6S-added

0.0

g__Achromobacter.s__

g__Achromobacter

f__Enterobacteriaceae

f__Enterobacteriaceae

Linear Discriminant Analysis (LDA) Score (log 10)

Post-cultivation

None-added

-0.1

Pre-cultivation

-0.2

-0.3

-0.2

-0.1

0.0

0.1

0.2

PCo1 (52.4%)

Katoh et al., Extended Data Fig. 2

Sgl clade

BbhII clade

Substrate specificity

6-SO3-β-N-Acetylglucosaminidase

β-N-Acetylhexosaminidase (Broad substrate specificity)

Chitinolytic β-N-acetylglucosaminidase

N-Glycan processing β-N-acetyglucosaminidase

Disperisin B (β-1,6-specific N-acetylglucosaminidase)

β-1,3-N-Acetylglucosaminidase acting on lacto-N-triose II and mucin core 3

Lacto-N-biosidase

Taxonomic classification

Eukaryotes

Mammal

Plant

Insect/prawn

Fungi

Nematode (C. elegans)

Others

Bacterial phyla

Actinomycetota

Bacillota

Bacteroidota

Chlamydiae

Pseudomonadota

Verrucomicrobiota

Katoh et al., Extended Data Fig. 3

Relative abundances of species-specific reads vs. bbhII homologspecific reads in the metagenomic dataset obtained for mothers

Relative abundances of species-specific reads vs. sgl homologspecific reads in the metagenomic dataset obtained for infants

Species

q value

(FDR correction,

Q = 5 %)

Species

q value

(FDR correction,

Q = 5 %)

Flintibacter sp. KGMB00164

0.0167

0.378

Bacteroides thetaiotaomicron

Bacteroides caccae

Bacteroides sp. CBA7301

Butyricimonas faecalis

Bacteroides sp. A1C1

Bacteroides sp. HF 162

Bacteroides sp. CACC 737

Paraprevotella xylaniphila

Barnesiella viscericola

Bacteroides uniformis

Bacteroides intestinalis

Phocaeicola dorei

Bacteroides sp. M10

Odoribacter splanchnicus

Bacteroides sp. HF 5287

Bacteroides helcogenes

Bacteroides caecimuris

Bacteroides cellulosilyticus

Bacteroides sp. HF 5141

Parabacteroides sp. CT06

Bacteroides ovatus

Parabacteroides distasonis

Phocaeicola salanitronis

Alistipes megaguti

Collinsella aerofaciens

Clostridium perfringens

Bacteroides xylanisolvens

Phocaeicola vulgatus

Sutterella faecalis

Parolsenella catena

Alistipes finegoldii

Alistipes shahii

Alistipes communis

2.28E-14

3.43E-13

3.84E-08

1.57E-07

4.23E-07

4.23E-07

4.23E-07

2.21E-06

1.29E-05

1.29E-05

1.78E-05

1.78E-05

2.45E-05

2.93E-05

3.14E-05

3.95E-05

0.0000500

7.80E-05

7.80E-05

0.000213

0.000262

0.000416

0.000461

0.00112

0.00132

0.00207

0.00337

0.00349

0.00425

0.00754

0.00923

0.00983

0.0156

0.764

0.737

0.617

0.595

0.573

0.572

0.572

0.545

0.513

0.511

0.504

0.502

0.495

0.490

0.487

0.481

0.476

0.465

0.464

0.442

0.436

0.424

0.421

0.397

0.392

-0.379

0.365

0.363

0.356

0.338

0.330

0.327

0.311

Relative abundances of species-specific reads vs. sgl homologspecific reads in the metagenomic dataset obtained for mothers

Species

Bacteroides thetaiotaomicron

Bacteroides caccae

Parabacteroides sp. CT06

Bacteroides sp. HF 162

Bacteroides caecimuris

Bacteroides sp. HF 5141

Bacteroides sp. CBA7301

Bacteroides fragilis

Bacteroides sp. CACC 737

Bacteroides ovatus

Bacteroides uniformis

Bacteroides xylanisolvens

Parabacteroides distasonis

Bacteroides sp. A1C1

Lacrimispora saccharolytica

Bifidobacterium angulatum

Bacteroides sp. M10

q value

(FDR correction,

Q = 5 %)

0.0000437

0.00313

0.00313

0.00313

0.00313

0.00313

0.00313

0.00393

0.00647

0.0127

0.0152

0.0152

0.0232

0.0294

0.0300

0.0483

0.798

0.5228

0.423

0.418

0.416

0.411

0.405

0.405

0.396

0.378

0.356

0.348

0.346

0.331

-0.321

-0.319

0.301

Katoh et al., Extended Data Fig. 4

qPCR

target region

Pr-MS955

B. bifidum

B. bifidum

pNP-GlcNAc6S-hydrolyzing activity

(nmol/min/mg protein)

bbhIIrt-P2-F

Wild-type

(kDa)

Pr-MS956

bbhIIrt-P2-R

250 180 -

Homologous region (501 bp)

130 -

Suicide plasmid pHT33

(CmR)

CmR

95 72 55 43 -

qPCR

target region

Single crossover

recombination

34 26 -

bbhIIrt-P2-F

17 11 -

250 180 130 95 72 55 43 34 26 -

80

60

40

20

WT

bbhII

Cell-free extracts

of B. bifidum

17 11 -

Disruptant

Antibodies: BbhII

GLBP

bbhIIrt-P2-R

BbhII-His6 (39-861aa)

CBM32

(kDa)

(kDa)

116 -

66.4 55.6 42.7 34.6 -

97.2 -

27.0 -

66.4 55.6 -

B. longum JCM 31944

expressing BbhII variants

(kDa)

190 135 100 -

20.0 -

80 -

14.3 -

58 -

BbhII

42.7 58 -

GLBP

46 -

BbhII-His6

Antibodies:

(kDa)

116 97.2 66.4 55.6 42.7 -

Katoh et al., Extended Data Fig. 5

Fuc

GlcNAc

GalNAc

Gal

GlcNAc-6S

NeuAc

Std.

PGM

HS

KS

CS

B. bifidum

HA

Katoh et al., Extended Data Fig. 6

Non-sulfated O-glycans of PCM

779

100

Sulfated O-glycans of PCM

100

BbhII (−)

BbhII (−)

**

1041

708

50

50

1491

1420

1286

1403

1246

Abundance (%)

953

534

1648

1736

2115

779

100

**

100

BbhII (+)

708

BbhII (+)

1403

953

50

50

1246

1648

534

1491

400

800

1041

1200

1600

2000

2400

400

800

−log10(q-value)

1736

1286

1200

m/z

1420

2115

1600

2000

2400

m/z

1041

Non-sulfated O-glycans

1112

1286

Sulfated O-glycans

1025

−4

−2

log2 (fold-change of

estimated glycan amount)

MS/MS at m/z 1041

100

Relative intensity (%)

370

631

694

921

Glycan symbol

L-Fuc

694

50

Molecular ion

[M+2Na−H]+

1041

853

370 433

ol

Gal

853

GalNAc

631

GlcNAc

921

100

600

1100

Sulfate

433

m/z

Katoh et al., Extended Data Fig. 7

MS/MS at m/z 1246 obtained from non-treated PCM

520

50

520

m/z 1246

ol

Molecular ion

[M+2Na−H]+

1246

(Resistant)

Mixture

Relative intensity (%)

748

748

100

970

100

600

1100

m/z

m/z 1246

(Resistant)

ol

970

748

520

MS/MS at m/z 1491 obtained from non-treated PCM

Relative intensity (%)

370

993

100

50

853

678 734

660

748 882

520

765

631

433

370

200

433

Molecular ion

[M+2Na−H]+

1491

1009

m/z 1491

(possibly

susceptible)

853

660

1200

1081

748

433

MS/MS at m/z 1491 obtained from BbhII-treated PCM

993

100

631

882

m/z

1302

765

50

1009

734

520

678

660

748

765

853

1215

1231

Molecular ion

[M+2Na−H]+

1491

ol

1371

1302

m/z 1491

(Resistant)

Mixture

Relative intensity (%)

ol

1215

1231

1081

1371

1144 1302

700

1144

1081

1009

835

200

700

678

1200

m/z

853

660

1231

520

o o

1302

993

ol

m/z 1491

(Resistant)

734

835

678

Glycan symbol

853

660

L-Fuc

1231

Gal

GalNAc

GlcNAc

Sulfate

1302

ol

m/z 1491

(Resistant)

1215

993

520

734

Katoh et al., Extended Data Fig. 8

Inhibition of BbhII by PUGNAc-6S

Inhibitor: PUGNAc-6S

Inhibitor: PUGNAc-6S

35

35

[I]

30

30

20

20

40

15

15

1/Turnover (sec)

20

-1

v (s-1)

0.20

0.20

10

25

25

Turnover (s )

0.25

0.25

(nM)

v-1 (s)

100

0.15

0.15

0.10

0.10

10

10

0.05

0.05

55

00

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

-10

-10

1.2

1.2

-8

-8

-6

-6

[S]0 (mM)

-4

-4

-2

-2

22

44

66

-1

1/[pNP- -GlcNAc-6S]

-1) )

[S-1] (mM(mM

[pNP- -GlcNAc-6S] (mM)

Inhibition of BbhII by NAGT-6S

Inhibitor: Thiazoline-GlcNAc-6S

Inhibitor: Thiazoline-GlcNAc-6S

[I]

(nM)

0.14

0.14

35

35

30

30

50

20

20

250

15

15

1/Turnover (sec)

v-1 (s)

0.10

0.10

100

-1

v (s-1)

25

25

Turnover (s )

0.12

0.12

25

0.08

0.08

0.06

0.06

10

10

0.04

0.04

55

0.02

0.02

00

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

-10

-10

1.2

1.2

-8

-8

-4

-4

-2

-2

Mode

Km (μM)

kcat (s-1)

Ki (nM)

PUGNAc-6S

Competitive

115 ± 14

32.3 ± 0.7

15.4 ± 1.9

NAGT-6S

Competitive

122 ± 16

32.6 ± 0.8

52.3 ± 7.2

Inhibitor

ITC analysis of CBM-His6 (WT)

pNP-β-GlcNAc-6S

pNP-β-GlcNAc

Ligand: 1 mM

Protein: 0.1 mM

c-value: 40.2

pNP-β-GlcNAcc-6S

00

44

66

[S-1]0 (mM-1)

[S]0 (mM)

-6

-6

1/[pNP- -GlcNAc-6S] (mM)

[pNP- -GlcNAc-6S] (mM)

Equation

kcat [E]0 [S]

v=

Km (1 + [ I ] / Ki ) + [S]

ITC analysis of CBM-His6 (W183A)

pNP-β-GlcNAc-6S

Ligand: 1 mM

Protein: 0.1 mM

pNP-β-GlcNAc

Ligand: 1 mM

Protein: 0.1 mM

Ligand: 1 mM

Protein: 0.1 mM

Ka

(103 M−1)

Kd

(μM)

ΔG0

(kJ mol−1)

ΔH

(kJ mol−1)

−TΔS0

(kJ mol−1)

40.2 ± 3.4

24.9 ± 2.1

−26.7

−49.2± 1.5

22.5

0.924 ± 0.018

Katoh et al., Extended Data Fig. 9

VECTORS

NMDS1

muc-GH

R2

NMDS2

P (>r)

GH16_3

0.01789

-0.99984

0.5380

0.0001

GH109

0.08254

-0.99659

0.5344

0.0001

GH112

-0.08254

0.99659

0.5344

0.0001

GH101

-0.02202

0.99976

0.4907

0.0001

GH42

0.02708

0.99963

0.4381

0.0001

GH110

-0.03276

-0.99946

0.4358

0.0001

GH35

-0.17121

-0.98523

0.4095

0.0001

GH16

0.89625

-0.44354

0.3438

0.0001

GH98

-0.01299

0.99992

0.2307

0.0001

GH20

-0.09459

-0.99552

0.2009

0.0001

GH123

-0.92867

-0.37091

0.1303

0.0001

GH36

-0.96505

0.26208

0.1253

0.0003

GH89

-0.55027

-0.83499

0.1076

0.0001

GH95

-0.66414

0.74761

0.0793

0.0002

GH136

0.97722

-0.21225

0.0612

0.0028

GH31

-0.98287

0.1843

0.0514

0.0092

GH129

0.98287

-0.1843

0.0514

0.0092

GH84

0.71886

-0.69515

0.0322

0.0397

GH2

GH29

Permutation: free

Number of permutations: 9999

Katoh et al., Extended Data Fig. 10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る