リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Wilson’s disease model establishment from human induced pluripotent stem cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Wilson’s disease model establishment from human induced pluripotent stem cells

宋, 丹 筑波大学 DOI:10.15068/0002005642

2022.11.24

概要

Induced pluripotent stem cells (iPSCs) is a promising tool to study path- physiological processes in vitro. My study was aiming to establish Wilson disease (WD) model with patients derived iPSC line. WD is a copper metabolic disorder, which is caused by defective ATP7B function. Copper chelators are used as the conventional therapies, which usually cause severe side effects and present significant variation in efficacy according to the cohort studies. Thus, exploring new therapeutic medicine for preventing aggravation to liver failure is urgent. Here, I used four iPSC lines generated from WD patients which are carrying compound heterozygous mutations on ATP7B. To establish the Wilson’s disease hepatic model, WD iPSCs were induced into hepatocyte with a robust differentiation protocol. WD disease features were further identified in WD- specific hepatocyte. Results showed that although the expression level of ATP7B protein was variable among different WD iPSC line derived hepatocytes, the expression and secretion of ceruloplasmin (Cp), which is a downstream copper carrier in plasma, were consistently decreased in WD-specific and ATP7B- deficient hepatocytes. ATP7B loss- and gain-of-functions were further manifested with ATP7B-deficient iPSCs and heterozygous-corrected R778L WD patient- derived iPSCs using CRISPR-Cas9-based gene editing. Cp secretion-based drug screening identified retinoids as promising candidates for rescuing Cp secretion. Furthermore, transcriptome analysis was performed to compare the global gene expression between the healthy donor iPSC derived hepatocytes and WD-specific hepatocytes. The transcriptome data was showing that the dysregulated genes in the WD-Hep was related to abnormalities of retinoid signaling pathway and lipid metabolism in WD-specific hepatocytes. To further evaluate the therapeutic value of all-trans retinoic acid (ATRA) on fatty liver related disease, I established the steatosis model with WD-specific hepatocyte. Results showed that ATRA could also alleviate reactive oxygen species (ROS) production induced by lipid accumulation in WD-specific hepatocytes treated with oleic acid. These patient-derived iPSC-based hepatic models provide effective platforms to develop potential therapeutics for hepatic steatosis in WD and other fatty liver diseases.

この論文で使われている画像

参考文献

[1] A. Ala, A.P. Walker, K. Ashkan, J.S. Dooley, M.L. Schilsky, Wilson's disease, Lancet 369(9559) (2007) 397-408.

[2] C. Arioz, Y. Li, P. Wittung-Stafshede, The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations, Biometals 30(6) (2017) 823-840.

[3] D. Huster, A. Kuhne, A. Bhattacharjee, L. Raines, V. Jantsch, J. Noe, W. Schirrmeister, I. Sommerer, O. Sabri, F. Berr, J. Mossner, B. Stieger, K. Caca, S. Lutsenko, Diverse functional properties of Wilson disease ATP7B variants, Gastroenterology 142(4) (2012) 947-956 e5.

[4] A. Gomes, G.V. Dedoussis, Geographic distribution of ATP7B mutations in Wilson disease, Ann Hum Biol 43(1) (2016) 1-8.

[5] O. Bandmann, K.H. Weiss, S.G. Kaler, Wilson's disease and other neurological copper disorders, Lancet Neurol 14(1) (2015) 103-113.

[6] G.J. Brewer, Zinc and tetrathiomolybdate for the treatment of Wilson's disease and the potential efficacy of anticopper therapy in a wide variety of diseases, Metallomics 1(3) (2009) 199-206.

[7] D. Huster, T.D. Purnat, J.L. Burkhead, M. Ralle, O. Fiehn, F. Stuckert, N.E. Olson, D. Teupser, S. Lutsenko, High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease, J Biol Chem 282(11) (2007) 8343-55.

[8] Y. Kusuda, K. Hamaguchi, T. Mori, R. Shin, M. Seike, T. Sakata, Novel mutations of the ATP7B gene in Japanese patients with Wilson disease, J Hum Genet 45(2) (2000) 86-91.

[9] L. European Association for Study of, EASL Clinical Practice Guidelines: Wilson's disease, J Hepatol 56(3) (2012) 671-85.

[10] G.J. Brewer, Zinc acetate for the treatment of Wilson's disease, Expert Opin Pharmacother 2(9) (2001) 1473-7.

[11] E.A. Roberts, M.L. Schilsky, D. American Association for Study of Liver, Diagnosis and treatment of Wilson disease: an update, Hepatology 47(6) (2008) 2089-111.

[12] P. Ferenci, K. Caca, G. Loudianos, G. Mieli-Vergani, S. Tanner, I. Sternlieb, M. Schilsky, D. Cox, F. Berr, Diagnosis and phenotypic classification of Wilson disease, Liver Int 23(3) (2003) 139-42.

[13] E.V. Polishchuk, M. Concilli, S. Iacobacci, G. Chesi, N. Pastore, P. Piccolo, S. Paladino, D. Baldantoni, I.S.C. van, J. Chan, C.J. Chang, A. Amoresano, F. Pane, P. Pucci, A. Tarallo, G. Parenti, N. Brunetti-Pierri, C. Settembre, A. Ballabio, R.S. Polishchuk, Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis, Dev Cell 29(6) (2014) 686-700.

[14] P.V. van den Berghe, J.M. Stapelbroek, E. Krieger, P. de Bie, S.F. van de Graaf, R.E. de Groot, E. van Beurden, E. Spijker, R.H. Houwen, R. Berger, L.W. Klomp, Reduced expression of ATP7B affected by Wilson disease-causing mutations is rescued by pharmacological folding chaperones 4-phenylbutyrate and curcumin, Hepatology 50(6) (2009) 1783-95.

[15] H. Rauch, Toxic Milk, a New Mutation Affecting Copper-Metabolism in the Mouse, J Hered 74(3) (1983) 141-144.

[16] M.C. Yoshida, R. Masuda, M. Sasaki, N. Takeichi, H. Kobayashi, K. Dempo, M. Mori, New mutation causing hereditary hepatitis in the laboratory rat, J Hered 78(6) (1987) 361-5.

[17] K. Terada, T. Sugiyama, The Long-Evans Cinnamon rat: an animal model for Wilson's disease, Pediatr Int 41(4) (1999) 414-8.

[18] O.I. Buiakova, J. Xu, S. Lutsenko, S. Zeitlin, K. Das, S. Das, B.M. Ross, C. Mekios, I.H. Scheinberg, T.C. Gilliam, Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation, Human Molecular Genetics 8(9) (1999) 1665-1671.

[19] J.P. Hamilton, L. Koganti, A. Muchenditsi, V.S. Pendyala, D. Huso, J. Hankin, R.C. Murphy, D. Huster, U. Merle, C. Mangels, N. Yang, J.J. Potter, E. Mezey, S. Lutsenko, Activation of liver X receptor/retinoid X receptor pathway ameliorates liver disease in Atp7B(-/-) (Wilson disease) mice, Hepatology 63(6) (2016) 1828- 41.

[20] C.R. Wooton-Kee, M. Robertson, Y. Zhou, B.N. Dong, Z. Sun, K.H. Kim, H.L. Liu, Y. Xu, N. Putluri, P. Saha, C. Coarfa, D.D. Moore, A.M. Nuotio-Antar, Metabolic dysregulation in the Atp7b(-/-) Wilson's disease mouse model, P Natl Acad Sci USA 117(4) (2020) 2076-2083.

[21] J. Zhang, L. Wei, D. Chen, L. Feng, C. Wu, R. Wang, X. Li, Generation of an integration-free induced pluripotent stem cell (iPSC) line (ZZUNEUi003-A) from a Wilson's disease patient harboring a homozygous R778L mutation in ATP7B gene, Stem Cell Res 41 (2019) 101664.

[22] J. Zhang, L. Wei, D. Chen, L. Feng, C. Wu, R. Wang, X. Li, H. Liu, Generation of an integration-free induced pluripotent stem cell (iPSC) line (ZZUNEUi004-A) from a Wilson's disease patient harboring a homozygous Pro992Leu mutation in ATP7B gene, Stem Cell Res 44 (2020) 101741.

[23] L. Wei, J. Zhang, D. Chen, L. Feng, C. Wu, R. Wang, X. Li, Generation of an integration-free induced pluripotent stem cell (iPSC) line (ZZUNEUi005-A) from a Wilson's disease patient harboring a homozygous Pro992Leu mutation in ATP7B gene, Stem Cell Res 47 (2020) 101909.

[24] S.Q. Zhang, S. Chen, W. Li, X.P. Guo, P. Zhao, J.Y. Xu, Y. Chen, Q. Pan, X.R. Liu, D. Zychlinski, H. Lu, M.D. Tortorella, A. Schambach, Y. Wang, D.Q. Pei, M.A. Esteban, Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin, Human Molecular Genetics 20(16) (2011) 3176-3187.

[25] F. Yi, J. Qu, M. Li, K. Suzuki, N.Y. Kim, G.H. Liu, J.C.I. Belmonte, Establishment of hepatic and neural differentiation platforms of Wilson's disease specific induced pluripotent stem cells, Protein Cell 3(11) (2012) 855-863.

[26] S. Parisi, E.V. Polishchuk, S. Allocca, M. Ciano, A. Musto, M. Gallo, L. Perone, G. Ranucci, R. Iorio, R.S. Polishchuk, S. Bonatti, Characterization of the most frequent ATP7B mutation causing Wilson disease in hepatocytes from patient induced pluripotent stem cells, Sci Rep-Uk 8 (2018).

[27] A.W. Overeem, K. Klappe, S. Parisi, P. Kloters-Planchy, L. Matakovic, M.D. Espina, C.A. Drouin, K.H. Weiss, S.C.D. van Ijzendoorn, Pluripotent stem cell- derived bile canaliculi-forming hepatocytes to study genetic liver diseases involving hepatocyte polarity, Journal of Hepatology 71(2) (2019) 344-356.

[28] J. Petters, C. Cimmaruta, K. Iwanov, M.L. Chang, C. Volkner, G. Knuebel, H.M. Escobar, M.J. Frech, A. Hermann, A. Rolfs, J. Lukas, Generation of induced pluripotent stem cell lines AKOSi002-A and AKOSi003-A from symptomatic female adults with Wilson disease, Stem Cell Research 43 (2020).

[29] A.J. Coffey, M. Durkie, S. Hague, K. McLay, J. Emmerson, C. Lo, S. Klaffke, C.J. Joyce, A. Dhawan, N. Hadzic, G. Mieli-Vergani, R. Kirk, K. Elizabeth Allen, D. Nicholl, S. Wong, W. Griffiths, S. Smithson, N. Giffin, A. Taha, S. Connolly, G.T. Gillett, S. Tanner, J. Bonham, B. Sharrack, A. Palotie, M. Rattray, A. Dalton, O. Bandmann, A genetic study of Wilson's disease in the United Kingdom, Brain 136(Pt 5) (2013) 1476-87.

[30] M. Sato, J.D. Gitlin, Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin, J Biol Chem 266(8) (1991) 5128-34.

[31] N.E. Hellman, J.D. Gitlin, Ceruloplasmin metabolism and function, Annu Rev Nutr 22 (2002) 439-58.

[32] A. Saha, A. Karnik, N. Sathawara, P. Kulkarni, V. Singh, Ceruloplasmin as a marker of occupational copper exposure, J Expo Sci Env Epid 18(3) (2008) 332- 337.

[33] A.L.P. Chapman, T.J. Mocatta, S. Shiva, A. Seidel, B. Chen, I. Khalilova, M.E. Paumann-Page, G.N.L. Jameson, C.C. Winterbourn, A.J. Kettle, Ceruloplasmin Is an Endogenous Inhibitor of Myeloperoxidase, Journal of Biological Chemistry 288(9) (2013) 6465-6477.

[34] K. Okita, T. Yamakawa, Y. Matsumura, Y. Sato, N. Amano, A. Watanabe, N. Goshima, S. Yamanaka, An Efficient Nonviral Method to Generate Integration- Free Human-Induced Pluripotent Stem Cells from Cord Blood and Peripheral Blood Cells, Stem Cells 31(3) (2013) 458-466.

[35] K. Okita, Y. Matsumura, Y. Sato, A. Okada, A. Morizane, S. Okamoto, H. Hong, M. Nakagawa, K. Tanabe, K. Tezuka, T. Shibata, T. Kunisada, M. Takahashi, J. Takahashi, H. Saji, S. Yamanaka, A more efficient method to generate integration-free human iPS cells, Nat Methods 8(5) (2011) 409-U52.

[36] M. Nakagawa, Y. Taniguchi, S. Senda, N. Takizawa, T. Ichisaka, K. Asano, A. Morizane, D. Doi, J. Takahashi, M. Nishizawa, Y. Yoshida, T. Toyoda, K. Osafune, K. Sekiguchi, S. Yamanaka, A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells, Sci Rep-Uk 4 (2014).

[37] M. Frydman, B. Bonnetamir, L.A. Farrer, P.M. Conneally, A. Magazanik, S. Ashbel, Z. Goldwitch, Assignment of the Gene for Wilson Disease to Chromosome-13 - Linkage to the Esterase-D Locus, P Natl Acad Sci USA 82(6) (1985) 1819-1821.

[38] R.E. Tanzi, K. Petrukhin, I. Chernov, J.L. Pellequer, W. Wasco, B. Ross, D.M. Romano, E. Parano, L. Pavone, L.M. Brzustowicz, M. Devoto, J. Peppercorn, A.I. Bush, I. Sternlieb, M. Pirastu, J.F. Gusella, O. Evgrafov, G.K. Penchaszadeh, B. Honig, I.S. Edelman, M.B. Soares, I.H. Scheinberg, T.C. Gilliam, The Wilson Disease Gene Is a Copper Transporting Atpase with Homology to the Menkes Disease Gene, Nat Genet 5(4) (1993) 344-350.

[39] R. Siller, S. Greenhough, E. Naumovska, G.J. Sullivan, Small-Molecule- Driven Hepatocyte Differentiation of Human Pluripotent Stem Cells, Stem Cell Reports 4(5) (2015) 939-952.

[40] F.A. Ran, P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, F. Zhang, Genome engineering using the CRISPR-Cas9 system, Nat Protoc 8(11) (2013) 2281-2308.

[41] G. Duester, A. Molotkov, F.A. Mic, Retinoid activation of retinoic acid receptors but not retinoid X receptors is sufficient for mouse embryonic development, Faseb J 17(5) (2003) A779-A780.

[42] D.J. Mangelsdorf, E.S. Ong, J.A. Dyck, R.M. Evans, Nuclear Receptor That Identifies a Novel Retinoic Acid Response Pathway, Nature 345(6272) (1990) 224-229.

[43] S. Nkongolo, L. Nussbaum, F.A. Lempp, H. Wodrich, S. Urban, Y. Ni, The retinoic acid receptor (RAR) alpha-specific agonist Am80 (tamibarotene) and other RAR agonists potently inhibit hepatitis B virus transcription from cccDNA, Antiviral Res 168 (2019) 146-155.

[44] R.A. Chandraratna, Tazarotene--first of a new generation of receptor- selective retinoids, Br J Dermatol 135 Suppl 49 (1996) 18-25.

[45] A. Mounier, D. Georgiev, K.N. Nam, N.F. Fitz, E.L. Castranio, C.M. Wolfe, A.A. Cronican, J. Schug, I. Lefterov, R. Koldamova, Bexarotene-Activated Retinoid X Receptors Regulate Neuronal Differentiation and Dendritic Complexity, J Neurosci 35(34) (2015) 11862-76.

[46] F. Zapata-Gonzalez, F. Rueda, J. Petriz, P. Domingo, F. Villarroya, J. Diaz- Delfin, M.A. de Madariaga, J.C. Domingo, Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR(gamma):RXR heterodimers: comparison with other polyunsaturated fatty acids, J Leukoc Biol 84(4) (2008) 1172-82.

[47] T. Wilkins, A. Tadkod, I. Hepburn, R.R. Schade, Nonalcoholic Fatty Liver Disease: Diagnosis and Management, Am Fam Physician 88(1) (2013) 35-42.

[48] J. Seessle, A. Gohdes, D.N. Gotthardt, J. Pfeiffenberger, N. Eckert, W. Stremmel, U. Reuner, K.H. Weiss, Alterations of lipid metabolism in Wilson disease, Lipids Health Dis 10 (2011) 83.

[49] Z. Chen, R. Tian, Z. She, J. Cai, H. Li, Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease, Free Radic Biol Med 152 (2020) 116-141.

[50] A. Yanagitani, S. Yamada, S. Yasui, T. Shimomura, R. Murai, Y. Murawaki, K. Hashiguchi, T. Kanbe, T. Saeki, M. Ichiba, Y. Tanabe, Y. Yoshida, S. Morino, A. Kurimasa, N. Usuda, H. Yamazaki, T. Kunisada, H. Ito, Y. Murawaki, G. Shiota, Retinoic acid receptor alpha dominant negative form causes steatohepatitis and liver tumors in transgenic mice, Hepatology 40(2) (2004) 366- 75.

[51] H. Tsuchiya, Y. Akechi, R. Ikeda, R. Nishio, T. Sakabe, K. Terabayashi, Y. Matsumi, A.A. Ashla, Y. Hoshikawa, A. Kurimasa, T. Suzuki, N. Ishibashi, S. Yanagida, G. Shiota, Suppressive effects of retinoids on iron-induced oxidative stress in the liver, Gastroenterology 136(1) (2009) 341-350 e8.

[52] L. Zarei, N. Farhad, A. Abbasi, All-Trans Retinoic Acid (atRA) effectively improves liver steatosis in a rabbit model of high fat induced liver steatosis, Arch Physiol Biochem (2020).

[53] C.R. Wooton-Kee, A.K. Jain, M. Wagner, M.A. Grusak, M.J. Finegold, S. Lutsenko, D.D. Moore, Elevated copper impairs hepatic nuclear receptor function in Wilson's disease, J Clin Invest 125(9) (2015) 3449-60.

[54] M.J. Czaja, F.R. Weiner, S.J. Schwarzenberg, I. Sternlieb, I.H. Scheinberg, D.H. Vanthiel, N.F. Larusso, M.A. Giambrone, R. Kirschner, M.L. Koschinsky, R.T.A. Macgillivray, M.A. Zern, Molecular Studies of Ceruloplasmin Deficiency in Wilsons-Disease, Journal of Clinical Investigation 80(4) (1987) 1200-1204.

[55] N. Tapryal, C. Mukhopadhyay, D. Das, P.L. Fox, C.K. Mukhopadhyay, Reactive Oxygen Species Regulate Ceruloplasmin by a Novel mRNA Decay Mechanism Involving Its 3 '-Untranslated Region IMPLICATIONS IN NEURODEGENERATIVE DISEASES, Journal of Biological Chemistry 284(3) (2009) 1873-1883.

[56] B. Wang, X.P. Wang, Does Ceruloplasmin Defend Against Neurodegenerative Diseases?, Curr Neuropharmacol 17(6) (2019) 539-549.

[57] S.J. Texel, X. Xu, Z.L. Harris, Ceruloplasmin in neurodegenerative diseases, Biochem Soc Trans 36(Pt 6) (2008) 1277-81.

[58] A. Zanardi, A. Conti, M. Cremonesi, P. D'Adamo, E. Gilberti, P. Apostoli, C.V. Cannistraci, A. Piperno, S. David, M. Alessio, Ceruloplasmin replacement therapy ameliorates neurological symptoms in a preclinical model of aceruloplasminemia, Embo Mol Med 10(1) (2018) 91-106.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る