リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency

Honda, Yoshitaka 京都大学 DOI:10.14989/doctor.k23378

2021.05.24

概要

X-linked dominant incontinentia pigmenti (IP) and X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) are caused by loss-of-function and hypomorphic IKBKG/NEMO mutations, respectively. We describe a European mother with mild IP and a Japanese mother without IP, whose three boys with EDA-ID died of immunodeficiency. We identify the same private variant in an intron of NEMO, IVS4+866 C>T, which was inherited from the European mother and occurred de novo in the Japanese mother’s germline. This mutation creates a new splicing donor site, giving rise to a 44-nucleotide pseudo-exon generating a frameshift. Its leakiness accounts for NF-κB activation being impaired, but not abolished in the boys’ cells. However, aberrant splicing rates differ between cell types, with WT NEMO mRNA and protein levels ranging from barely detectable in leukocytes to residual amounts in iPSC-derived macrophages, and higher levels in fibroblasts and iPSCderived neuronal precursor cells. Finally, SRSF6 binds to the pseudo-exon, facilitating its inclusion. Moreover, SRSF6 knockdown or CLK inhibition restores WT NEMO expression and function in mutant cells. A recurrent deep intronic splicing mutation in IKBKG/NEMO underlies a purely quantitative NEMO defect in males that is most severe in leukocytes and can be rescued by the inhibition of SRSF6 or CLK.

この論文で使われている画像

参考文献

1. Yamaoka, S., et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93, 1231-1240 (1998).

2. Rothwarf, D.M., Zandi, E., Natoli, G. & Karin, M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395, 297-300 (1998).

3. Ghosh, S. & Hayden, M.S. New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8, 837-848 (2008).

4. Oeckinghaus, A. & Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1, a000034 (2009).

5. Zhang, Q., Lenardo, M.J. & Baltimore, D. 30 years of NF-kB: a blossoming of relevance to human pathobiology. Cell (2017).

6. Hayden, M.S. & Ghosh, S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26, 203-234 (2012).

7. Smahi, A., et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466-472 (2000).

8. Fusco, F., et al. Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations. Hum Mutat 29, 595-604 (2008).

9. Doffinger, R., et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27, 277-285 (2001).

10. Zonana, J., et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 67, 1555-1562 (2000).

11. Visinoni, A.F., Lisboa-Costa, T., Pagnan, N.A. & Chautard-Freire-Maia, E.A. Ectodermal dysplasias: clinical and molecular review. Am J Med Genet A 149A, 1980-2002 (2009).

12. Hanson, E.P., et al. Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 122, 1169-1177 e1116 (2008).

13. Puel, A., et al. The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation. Am J Hum Genet 78, 691-701 (2006).

14. Fusco, F., et al. EDA-ID and IP, two faces of the same coin: how the same IKBKG/NEMO mutation affecting the NF-kappaB pathway can cause immunodeficiency and/or inflammation. Int Rev Immunol 34, 445-459 (2015).

15. Aradhya, S., et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 10, 2171- 2179 (2001).

16. Fusco, F., et al. Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-kappaB activation. Hum Mol Genet 13, 1763-1773 (2004).

17. Fusco, F., et al. Microdeletion/duplication at the Xq28 IP locus causes a de novo IKBKG/NEMO/IKKgamma exon4_10 deletion in families with Incontinentia Pigmenti. Hum Mutat 30, 1284-1291 (2009).

18. Conte, M.I., et al. Insight into IKBKG/NEMO locus: report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease. Hum Mutat 35, 165-177 (2014).

19. Orange, J.S., et al. Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest 109, 1501-1509 (2002).

20. Nishikomori, R., et al. X-linked ectodermal dysplasia and immunodeficiency caused by reversion mosaicism of NEMO reveals a critical role for NEMO in human T-cell development and/or survival. Blood 103, 4565-4572 (2004).

21. Filipe-Santos, O., et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 203, 1745-1759 (2006).

22. Niehues, T., et al. A NEMO-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol 114, 1456-1462 (2004).

23. Orange, J.S., et al. Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J Allergy Clin Immunol 114, 650-656 (2004).

24. Orstavik, K.H., et al. Novel splicing mutation in the NEMO (IKK-gamma) gene with severe immunodeficiency and heterogeneity of X-chromosome inactivation. Am J Med Genet A 140, 31-39 (2006).

25. Karakawa, S., et al. Decreased expression in nuclear factor-kappaB essential modulator due to a novel splice-site mutation causes X-linked ectodermal dysplasia with immunodeficiency. J Clin Immunol 31, 762-772 (2011).

26. Jorgensen, S.E., et al. Ectodermal dysplasia with immunodeficiency caused by a branch-point mutation in IKBKG/NEMO. J Allergy Clin Immunol 138, 1706-1709 e1704 (2016).

27. Mooster, J.L., et al. Immune deficiency caused by impaired expression of nuclear factor-kappaB essential modifier (NEMO) because of a mutation in the 5' untranslated region of the NEMO gene. J Allergy Clin Immunol 126, 127-132 e127 (2010).

28. Hsu, A.P., et al. IKBKG (NEMO) 5′ Untranslated Splice Mutations Lead to Severe, Chronic Disseminated Mycobacterial Infections. Clinical Infectious Diseases 67, 456-459 (2018).

29. Courtois, G., et al. A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112, 1108- 1115 (2003).

30. Boisson, B., Puel, A., Picard, C. & Casanova, J.L. Human IkappaBalpha Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 37, 397-412 (2017).

31. Bardaro, T., et al. Two cases of misinterpretation of molecular results in incontinentia pigmenti, and a PCR-based method to discriminate NEMO/IKKgamma dene deletion. Hum Mutat 21, 8- 11 (2003).

32. Steffann, J., et al. A novel PCR approach for prenatal detection of the common NEMO rearrangement in incontinentia pigmenti. Prenat Diagn 24, 384-388 (2004).

33. Frans, G., et al. Conventional and Single-Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn 20, 195- 202 (2018).

34. Dobkin, C. & Bank, A. A nucleotide change in IVS 2 of a beta-thalassemia gene leads to a cryptic splice not at the site of the mutation. Prog Clin Biol Res 134, 127-128 (1983).

35. Treisman, R., Orkin, S.H. & Maniatis, T. Specific transcription and RNA splicing defects in five cloned beta-thalassaemia genes. Nature 302, 591-596 (1983).

36. Gonorazky, H., et al. RNAseq analysis for the diagnosis of muscular dystrophy. Ann Clin Transl Neurol 3, 55-60 (2016).

37. Khan, A.O., et al. A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula. Sci Rep 7, 1411 (2017).

38. Bustamante, J., et al. BCG-osis and tuberculosis in a child with chronic granulomatous disease. J Allergy Clin Immunol 120, 32-38 (2007).

39. Starokadomskyy, P., et al. DNA polymerase-alpha regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol 17, 495-504 (2016).

40. Meyts, I. & Casanova, J.L. A human inborn error connects the alpha's. Nat Immunol 17, 472-474 (2016).

41. Xiong, H.Y., et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).

42. Vaz-Drago, R., Custodio, N. & Carmo-Fonseca, M. Deep intronic mutations and human disease. Hum Genet 136, 1093-1111 (2017).

43. Treangen, T.J. & Salzberg, S.L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13, 36-46 (2011).

44. Telenti, A., et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A 113, 11901-11906 (2016).

45. Cartegni, L., Wang, J., Zhu, Z., Zhang, M.Q. & Krainer, A.R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 31, 3568-3571 (2003).

46. Gao, K., Masuda, A., Matsuura, T. & Ohno, K. Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36, 2257-2267 (2008).

47. Fu, X.D. & Ares, M., Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15, 689-701 (2014).

48. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3, 285-298 (2002).

49. Ohe, K. & Hagiwara, M. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases. ACS Chem Biol 10, 914-924 (2015).

50. Yoshida, M., et al. Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci U S A 112, 2764-2769 (2015).

51. Muraki, M., et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279, 24246-24254 (2004).

52. Nishida, A., et al. Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun 2, 308 (2011).

53. Fukuhara, T., et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc Natl Acad Sci U S A 103, 11329-11333 (2006).

54. Jain, A., et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2, 223-228 (2001).

55. Orange, J.S., et al. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol 113, 725-733 (2004).

56. Ku, C.L., et al. NEMO mutations in 2 unrelated boys with severe infections and conical teeth. Pediatrics 115, e615-619 (2005).

57. Ku, C.L., et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med 204, 2407- 2422 (2007).

58. Hubeau, M., et al. New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein. Blood 118, 926-935 (2011).

59. Mizukami, T., et al. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J Clin Immunol 32, 39- 49 (2012).

60. Haverkamp, M.H., Arend, S.M., Lindeboom, J.A., Hartwig, N.G. & van Dissel, J.T. Nontuberculous mycobacterial infection in children: a 2-year prospective surveillance study in the Netherlands. Clin Infect Dis 39, 450-456 (2004).

61. Fusco, F., Mercadante, V., Miano, M.G. & Ursini, M.V. Multiple regulatory regions and tissuespecific transcription initiation mediate the expression of NEMO/IKKgamma gene. Gene 383, 99-107 (2006).

62. International Human Genome Sequencing, C. Finishing the euchromatic sequence of the human genome. Nature 431, 931-945 (2004).

63. Belkadi, A., et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 112, 5473-5478 (2015).

64. Meyts, I., et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol 138, 957-969 (2016).

65. Goodwin, S., McPherson, J.D. & McCombie, W.R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 17, 333 (2016).

66. Sudmant, P.H., et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75 (2015).

67. Genomes Project, C., et al. A global reference for human genetic variation. Nature 526, 68-74 (2015).

68. Lek, M., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285 (2016).

69. Keller, M.D., et al. Hypohidrotic ectodermal dysplasia and immunodeficiency with coincident NEMO and EDA mutations. Front Immunol 2, 61 (2011).

70. Frans, G., et al. Functional Evaluation of an IKBKG Variant Suspected to Cause Immunodeficiency Without Ectodermal Dysplasia. J Clin Immunol 37, 801-810 (2017).

71. Hsiao, P.F., et al. NEMO gene mutations in Chinese patients with incontinentia pigmenti. J Formos Med Assoc 109, 192-200 (2010).

72. Gautheron, J., et al. Identification of a new NEMO/TRAF6 interface affected in incontinentia pigmenti pathology. Hum Mol Genet 19, 3138-3149 (2010).

73. Jenne, D.E., et al. Molecular characterization and gene content of breakpoint boundaries in patients with neurofibromatosis type 1 with 17q11.2 microdeletions. Am J Hum Genet 69, 516- 527 (2001).

74. Pentao, L., Wise, C.A., Chinault, A.C., Patel, P.I. & Lupski, J.R. Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nat Genet 2, 292-300 (1992).

75. Carvalho, C.M., Zhang, F. & Lupski, J.R. Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A 107 Suppl 1, 1765-1771 (2010).

76. Dittwald, P., et al. Inverted low-copy repeats and genome instability--a genome-wide analysis. Hum Mutat 34, 210-220 (2013).

77. Schwarz, J.M., Cooper, D.N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature Methods 11, 361 (2014).

78. Kircher, M., et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46, 310-315 (2014).

79. Itan, Y., et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci U S A 112, 13615-13620 (2015).

80. Itan, Y., et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods 13, 109-110 (2016).

81. Li, Y.I., et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600-604 (2016).

82. Hsiao, Y.H., et al. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins. Genome Res 26, 440-450 (2016).

83. Sakuma, M., Iida, K. & Hagiwara, M. Deciphering targeting rules of splicing modulator compounds: case of TG003. BMC Mol Biol 16, 16 (2015).

84. Folco, E.G., Coil, K.E. & Reed, R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 25, 440-444 (2011).

85. Kotake, Y., et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3, 570-575 (2007).

86. Kaida, D., et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3, 576-583 (2007).

87. Eskens, F.A., et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19, 6296- 6304 (2013).

88. Hong, D.S., et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32, 436-444 (2014).

89. Lee, A.J., et al. Severe Mycobacterial Diseases in a Patient with GOF IkappaBalpha Mutation Without EDA. J Clin Immunol 36, 12-15 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る