リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Age estimates from brain magnetic resonance images of children younger than two years of age using deep learning」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Age estimates from brain magnetic resonance images of children younger than two years of age using deep learning

川口, 将宏 名古屋大学

2022.07.01

概要

The accuracy of brain age estimates from magnetic resonance (MR) images has improved with the advent of deep learning artificial intelligence (AI) models. However, most previous studies on predicting age emphasized aging from childhood to adulthood and old age, and few studies have focused on early brain development in children younger than 2 years of age. Here, we performed brain age estimates based on MR images in children younger than 2 years of age using deep learning. Our AI model, developed with one slice each of raw T1- and T2-weighted images from each subject, estimated brain age with a mean absolute error of 8.2 weeks (1.9 months). The estimates of our AI model were close to those of human specialists. The AI model also estimated the brain age of subjects with a myelination delay as significantly younger than the chronological age. These results indicate that the prediction accuracy of our AI model approached that of human specialists and that our simple method requiring less data and preprocessing facilitates a radiological assessment of brain development, such as monitoring maturational changes in myelination.

この論文で使われている画像

参考文献

[1] Sajedi H, Pardakhti N. Age prediction based on brain MRI image: a survey. J Med Syst 2019;43:279. https://doi.org/10.1007/s10916-019-1401-7.

[2] Franke K, Ziegler G, Klo¨ppel S, Gaser C, The Alzheimer’s Disease Neuroimaging Initiative. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 2010; 50:883–92. https://doi.org/10.1016/j.neuroimage.2010.01.005.

[3] Greenspan H, Ginneken BV, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016;35:1153–9. https://doi.org/10.1109/TMI.2016.2553401.

[4] Barkovich AJ, Mukherjee P. Normal development of the neonatal and infant brain, skull, and spine. In: Barkovich AJ, Raybaud C, editors. Pediatric Neuroimaging. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 20–80.

[5] Kingma DP, Ba JL. Adam: a method for stochastic optimization. http://arxiv. org/abs/1412.6980;; 2017.

[6] Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.

[7] Brown TT, Kuperman JM, Chung Y, Erhart M, McCabe C, Hagler Jr DJ, et al. Neuroanatomical assessment of biological maturity. Curr Biol 2012;22:1693–8. https://doi.org/10.1016/j.cub.2012.07.002.

[8] Cao B, Mwangi B, Hasan KM, Selvaraj S, Zeni CP, Zunta-Soares GB, et al. Development and validation of a brain maturation index using longitudinal neuroanatomical scans. Neuroimage 2015;117:311–8. https://doi.org/10.1016/j. neuroimage.2015.05.071.

[9] Erus G, Battapady H, Satterthwaite TD, Hakonarson H, Gur RE, Davatzikos C, et al. Imaging patterns of brain development and their relationship to cognition. Cereb Cortex 2015;25:1676–84. https://doi.org/10.1093/cercor/bht425.

[10] Franke K, Luders E, May A, Wilke M, Gaser C. Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. Neuroimage 2012;63:1305–12. https://doi.org/10.1016/j.neuroimage.2012.08.001.

[11] Khundrakpam BS, Tohka J, Evans AC, Brain Development Cooperative Group. Prediction of brain maturity based on cortical thickness at different spatial resolutions. Neuroimage 2015;111:350–9. https://doi.org/10.1016/j. neuroimage.2015.02.046.

[12] Lewis JD, Evans AC, Tohka J, Brain Development Cooperative Group, the Pediatric Imaging, Neurocognition, and Genetics Study. T1 white/gray contrast as a predictor of chronological age, and an index of cognitive performance. Neuroimage 2018;173:341–50. https://doi.org/10.1016/j.neuroimage.2018.02.050.

[13] Wang J, Li W, Miao W, Dai D, Hua J, He H. Age estimation using cortical surface pattern combining thickness with curvatures. Med Biol Eng Comput 2014;52: 331–41. https://doi.org/10.1007/s11517-013-1131-9.

[14] Hu D, Wu Z, Lin W, Li G, Shen D. Hierarchical rough-to-fine model for infant age prediction based on cortical features. IEEE J Biomed Health Inform 2020;24: 214–25. https://doi.org/10.1109/JBHI.2019.2897020.

[15] Bermudez C, Plassard AJ, Chaganti S, Huo Y, Aboud KS, Cutting LE, et al. Anatomical context improves deep learning on the brain age estimation task. Magn Reson Imaging 2019;62:70–7. https://doi.org/10.1016/j.mri.2019.06.018.

[16] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: visual explanations from deep networks via gradient-based localization. Proc IEEE Int Conf Comp Vision 2017:618–26. https://doi.org/10.1109/ICCV.2017.74.

[17] Cole JH, Ritchie SJ, Bastin ME, Vald´es Herna´ndez MC, Mun˜oz Maniega S, Royle N, et al. Brain age predicts mortality. Mol Psychiatry 2018;23:1385–92. https://doi. org/10.1038/mp.2017.62.

[18] Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 2017;40:681–90. https://doi.org/10.1016/j. tins.2017.10.001.

[19] Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KL, Goh VJ, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology 2020;294: 487–9. https://doi.org/10.1148/radiol.2019192515.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る