リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Solid–Liquid Phase Behaviors of Binary Mixtures of Various Partial Acylglycerols by Differential Scanning Calorimetry」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Solid–Liquid Phase Behaviors of Binary Mixtures of Various Partial Acylglycerols by Differential Scanning Calorimetry

Seniorita, Latifa Minami, Eiji Kawamoto, Haruo 京都大学 DOI:10.1002/ejlt.202100092

2022.01

概要

Monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) are impurities in biodiesel and a major cause of precipitation. Understanding the behavior of such acylglycerols is essential for predicting biodiesel cold flow properties (CFPs). The previous study on MAG/MAG binary mixtures shows that they tend to solidify by forming molecular compounds. In contrast, TAG/TAG mixtures, which have been studied extensively, are commonly eutectic or monotectic systems, in which each component solidifies separately. The present study focuses on binary mixtures of DAG/DAG and different acylglycerol pairs (MAG/DAG, TAG/MAG, and DAG/TAG), and determination of their solid–liquid phase behavior by differential scanning calorimetry. These mixtures are found to behave as eutectic or monotectic systems with no sign of compound formation. As DAG and TAG have lower contents than MAG in biodiesel and they are unlikely to form molecular compounds with MAG, it is suggested that DAG and TAG have little effect on the biodiesel CFPs. Practical Applications: Biodiesel has attracted much interest because its blending with conventional fossil diesel has become more standard with biofuel mandates. From an energy perspective, the solid–liquid phase behavior of acylglycerols will contribute to building prediction models for biodiesel CFPs.

この論文で使われている画像

参考文献

[1] L. Yu, I. Lee, E. G. Hammond, L. A. Johnson, J. H. Van Gerpen. The influence of trace components on the melting point of methyl soyate. J. Am. Oil Chem. Soc., 1998, 75, 1821–1824.\n[2] H. Tang, R. C. De Guzman, S. O. Salley, K. Y. S. Ng. Formation of insolubles in palm oil-, yellow grease-, and soybean oil-based biodiesel blends after cold soaking at 4 °c. J. Am. Oil Chem. Soc., 2008, 85, 1173–1182.

[3] G. M. Chupka, J. Yanowitz, G. Chiu, T. L. Alleman, R. L. McCormick. Effect of saturated monoglyceride polymorphism on low-temperature performance of biodiesel. Energy Fuels, 2011, 25, 398–405.

[4] Y. Sugami, S. Yoshidomi, E. Minami, N. Shisa, H. Hayashi, S. Saka. The effect of monoglyceride polymorphism on cold-flow properties of biodiesel model fuel. J. Am. Oil Chem. Soc., 2017, 94, 1095–1100.

[5] S. Yoshidomi, Y. Sugami, E. Minami, N. Shisa,H. Hayashi, S. Saka. Predicting solid–liquid equilibrium of fatty acid methyl ester and monoglyceride mixtures as biodiesel model fuels. J. Am. Oil Chem. Soc., 2017, 94, 1087–1094.

[6] I. Foubert, K. Dewettinck, D. Van de Walle, A.J. Dijkstra, P. J. Quinn. Physical properties: Structural and physical characteristics, in Lipid Handb. with CD-ROM, (Eds: F.D. Gunstone, J.L. Harwood, A.J. Dijkstra), CRC Press, Boca Raton, 2007.

[7] I. Paryanto, T. Prakoso, M. Gozan. Determination of the upper limit of monoglyceride content in biodiesel for B30 implementation based on the measurement of the precipitate in a Biodiesel–Petrodiesel fuel blend (BXX). Fuel, 2019, 258, 116104.

[8] H. Imahara, E. Minami, S. Saka. Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel, 2006, 85, 1666–1670.

[9] R. O. Dunn. Crystallization behavior of fatty acid methyl esters. J. Am. Oil Chem. Soc., 2008, 85, 961–972.

[10] J. C. A. Lopes, L. Boros, M. A. Kráhenbúhl, A.J. A. Meirelles, J. L. Daridon, J. Pauly, I. M. Marrucho, J. A. P. Coutinho. Prediction of cloud points of biodiesel. Energy and Fuels, 2008, 22, 747–752.

[11] R. O. Dunn. Correlating the Cloud Point of Biodiesel to the Concentration and Melting Properties of the Component Fatty Acid Methyl Esters. Energy and Fuels, 2018, 32, 455–464.

[12] L. Seniorita, E. Minami, Y. Yazawa, H. Hayashi, S. Saka. Differential Scanning Calorimetric Study of Solidification Behavior of Monoacylglycerols to Investigate the Cold-Flow Properties of Biodiesel. J. Am. Oil Chem. Soc., 2019, 96, 979–987.

[13] R. E. Timms. Phase behaviour of fats and their mixtures. Prog. Lipid Res., 1984, 23, 1–38.

[14] L. Zhang, S. Ueno, K. Sato. Binary phase behavior of saturated-unsaturated mixed- acid triacylglycerols—A review. J. Oleo Sci., 2018, 67, 679–687.

[15] L. Seniorita, E. Minami, H. Kawamoto. Solidification behavior of acylglycerols in fatty acid methyl esters and effects on thecold flow properties of biodiesel. J. Am. Oil Chem. Soc., 2021, 98, 727–735.

[16] J. M. Smith, H. C. Van Ness, M. M. Abbott. Introduction to Chemical Engineering Thermodynamics, McGraw-Hill Education, New York, 2005.

[17] J. Gmehling, J. Li, M. Schiller. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res., 1993, 32, 178–193.

[18] J. M. Prausnitz, R. N. Lichtenthaler, E. G. de Azevedo. Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall PTR, New Jersey, 1999.

[19] J. Vereecken, W. Meeussen, I. Foubert, A. Lesaffer, J. Wouters, K. Dewettinck. Comparing the crystallization and polymorphic behaviour of saturated and unsaturated monoglycerides. Food Res. Int., 2009, 42, 1415–1425.

[20] K. Sato, T. Kuroda. Kinetics of melt crystallization and transformation of tripalmitin polymorphs. J. Am. Oil Chem. Soc., 1987, 64, 124–127.

[21] R. J. Craven, R. W. Lencki. Binary phase behavior of diacid 1,3-diacylglycerols. J. Am. Oil Chem. Soc., 2011, 88, 1125–1134.

[22] Y. Xu, C. Dong. Phase behavior of binary mixtures of three different 1,3- diacylglycerols. Eur. J. Lipid Sci. Technol., 2017, 119, 1–13.

[23] L. Engström. Triglyceride systems forming molecular compounds. Eur. J. Lipid Sci. Tech., 1992, 94, 173–181.

[24] Committee for Standardization Automotive Fuels. Fatty Acid Methyl Esters (FAME) for Biodiesel Engines - Requirements and Test Methods (EN14214), European Committee For Standardization CEN, 2008.

[25] A. Holmgren, G. Lindblom, L. B. . Johansson. Intramolecular hydrogen bonding in a monoglyceride lipid studied by Fourier transform infrared spectroscopy. J. Phys. Chem., 1988, 92, 5639–5642.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る