リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Solidification behavior of acylglycerols in fatty acid methyl esters and effects on the cold flow properties of biodiesel」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Solidification behavior of acylglycerols in fatty acid methyl esters and effects on the cold flow properties of biodiesel

Seniorita, Latifa Minami, Eiji Kawamoto, Haruo 京都大学 DOI:10.1002/aocs.12492

2021.07

概要

The formation of precipitates in biodiesel (comprising fatty acid methyl esters [FAMEs] obtained from plant oils) can lead to the clogging of fuel filters. Such precipitates are often caused by the solidification of acylglycerols (monoacylglycerols [MAGs], diacylglycerols [DAGs], and triacylglycerols [TAGs]) that have higher melting points than FAMEs. Based on our prior study on the solidification behavior of MAG/FAME binary mixtures, the present work investigated the behavior of various DAGs and TAGs combined with FAMEs. Differential scanning calorimetry was used to clarify the effects of acylglycerols on the cold-flow properties of biodiesel. When DAGs and TAGs were added to FAMEs, the liquidus temperatures (above which the mixtures were completely liquid) increased steeply even at low concentrations. This same behavior was observed previously in trials with MAGs, indicating that all acylglycerols readily precipitate in combination with FAMEs. However, thermodynamic analyses established that the reasons for such precipitation were different for different compounds. MAGs precipitates because they contain two hydroxyl groups and therefore have a low affinity for FAMEs. In contrast, TAGs precipitates as a result of their high enthalpies of fusion (which in turn are caused by high molecular weights), while both factors affect the precipitation of DAGs. A non-solid-solution thermodynamic model that assumes a eutectic system was found to accurately predict the liquidus temperatures of binary and multicomponent mixtures containing various acylglycerols with FAMEs.

この論文で使われている画像

参考文献

[1]

[2]

4 Conclusions

This study showed that the liquidus temperatures

of DAG/DAG mixtures either follow a simple Vshape curve or change monotonically, both of

which fit well with values predicted by the NSS

model. The formation of molecular compounds

between different types of DAG was not observed.

According to previous studies, such eutectic or

monotectic behavior has also been commonly

observed in TAG/TAG mixtures. Similarly, the

liquidus curves of binary mixtures of different

types of acylglycerol, namely, DAG/MAG,

TAG/MAG, and DAG/TAG, were in good agreement

with the NSS model, with a few exceptions.

However, for TAG/MAG mixtures, concerns

remained regarding the reliability of the UNIFAC

(Dortmund) model for estimating the activity

coefficient. These results implied that each

[3]

[4]

[5]

L. Yu, I. Lee, E. G. Hammond, L. A. Johnson, J.

H. Van Gerpen. The influence of trace

components on the melting point of methyl

soyate. J. Am. Oil Chem. Soc., 1998, 75,

1821–1824.

H. Tang, R. C. De Guzman, S. O. Salley, K. Y. S.

Ng. Formation of insolubles in palm oil-,

yellow grease-, and soybean oil-based

biodiesel blends after cold soaking at 4 °c. J.

Am. Oil Chem. Soc., 2008, 85, 1173–1182.

G. M. Chupka, J. Yanowitz, G. Chiu, T. L.

Alleman, R. L. McCormick. Effect of

saturated monoglyceride polymorphism on

low-temperature performance of biodiesel.

Energy Fuels, 2011, 25, 398–405.

Y. Sugami, S. Yoshidomi, E. Minami, N. Shisa,

H. Hayashi, S. Saka. The effect of

monoglyceride polymorphism on cold-flow

properties of biodiesel model fuel. J. Am. Oil

Chem. Soc., 2017, 94, 1095–1100.

S. Yoshidomi, Y. Sugami, E. Minami, N. Shisa,

H. Hayashi, S. Saka. Predicting solid–liquid

equilibrium of fatty acid methyl ester and

monoglyceride mixtures as biodiesel model

fuels. J. Am. Oil Chem. Soc., 2017, 94, 1087–

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

1094.

I. Foubert, K. Dewettinck, D. Van de Walle, A.

J. Dijkstra, P. J. Quinn. Physical properties:

Structural and physical characteristics, in

Lipid Handb. with CD-ROM, (Eds: F.D.

Gunstone, J.L. Harwood, A.J. Dijkstra), CRC

Press, Boca Raton, 2007.

I. Paryanto, T. Prakoso, M. Gozan.

Determination of the upper limit of

monoglyceride content in biodiesel for B30

implementation based on the measurement

of the precipitate in a Biodiesel–Petrodiesel

fuel blend (BXX). Fuel, 2019, 258, 116104.

H. Imahara, E. Minami, S. Saka.

Thermodynamic study on cloud point of

biodiesel with its fatty acid composition.

Fuel, 2006, 85, 1666–1670.

R. O. Dunn. Crystallization behavior of fatty

acid methyl esters. J. Am. Oil Chem. Soc.,

2008, 85, 961–972.

J. C. A. Lopes, L. Boros, M. A. Kráhenbúhl, A.

J. A. Meirelles, J. L. Daridon, J. Pauly, I. M.

Marrucho, J. A. P. Coutinho. Prediction of

cloud points of biodiesel. Energy and Fuels,

2008, 22, 747–752.

R. O. Dunn. Correlating the Cloud Point of

Biodiesel to the Concentration and Melting

Properties of the Component Fatty Acid

Methyl Esters. Energy and Fuels, 2018, 32,

455–464.

L. Seniorita, E. Minami, Y. Yazawa, H.

Hayashi, S. Saka. Differential Scanning

Calorimetric Study of Solidification Behavior

of Monoacylglycerols to Investigate the

Cold-Flow Properties of Biodiesel. J. Am. Oil

Chem. Soc., 2019, 96, 979–987.

R. E. Timms. Phase behaviour of fats and

their mixtures. Prog. Lipid Res., 1984, 23, 1–

38.

L. Zhang, S. Ueno, K. Sato. Binary phase

behavior of saturated-unsaturated mixedacid triacylglycerols—A review. J. Oleo Sci.,

2018, 67, 679–687.

L. Seniorita, E. Minami, H. Kawamoto.

Solidification behavior of acylglycerols in

fatty acid methyl esters and effects on the

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

cold flow properties of biodiesel. J. Am. Oil

Chem. Soc., 2021, 98, 727–735.

J. M. Smith, H. C. Van Ness, M. M. Abbott.

Introduction to Chemical Engineering

Thermodynamics, McGraw-Hill Education,

New York, 2005.

J. Gmehling, J. Li, M. Schiller. A modified

UNIFAC model. 2. Present parameter matrix

and results for different thermodynamic

properties. Ind. Eng. Chem. Res., 1993, 32,

178–193.

J. M. Prausnitz, R. N. Lichtenthaler, E. G. de

Azevedo. Molecular Thermodynamics of

Fluid-Phase Equilibria, Prentice Hall PTR,

New Jersey, 1999.

J. Vereecken, W. Meeussen, I. Foubert, A.

Lesaffer, J. Wouters, K. Dewettinck.

Comparing the crystallization and

polymorphic behaviour of saturated and

unsaturated monoglycerides. Food Res. Int.,

2009, 42, 1415–1425.

K. Sato, T. Kuroda. Kinetics of melt

crystallization and transformation of

tripalmitin polymorphs. J. Am. Oil Chem. Soc.,

1987, 64, 124–127.

R. J. Craven, R. W. Lencki. Binary phase

behavior of diacid 1,3-diacylglycerols. J. Am.

Oil Chem. Soc., 2011, 88, 1125–1134.

Y. Xu, C. Dong. Phase behavior of binary

mixtures of three different 1,3diacylglycerols. Eur. J. Lipid Sci. Technol.,

2017, 119, 1–13.

L. Engström. Triglyceride systems forming

molecular compounds. Eur. J. Lipid Sci. Tech.,

1992, 94, 173–181.

Committee for Standardization Automotive

Fuels. Fatty Acid Methyl Esters (FAME) for

Biodiesel Engines - Requirements and Test

Methods (EN14214), European Committee

For Standardization CEN, 2008.

A. Holmgren, G. Lindblom, L. B. . Johansson.

Intramolecular hydrogen bonding in a

monoglyceride lipid studied by Fourier

transform infrared spectroscopy. J. Phys.

Chem., 1988, 92, 5639–5642.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(b) DAG18:0/DAG16:0

(c) DAG18:1/TAG16:0

Mole fraction of DAG18:1

0.19

0.20

0.21

0.25

0.38

0.37

0.35

0.61

0.58

0.70

Heat flow

0.10

Heat flow

Heat flow

Exo.

(a) DAG18:0/DAG18:1

0.50

0.64

0.78

0.78

Endo.

Mole fraction

of DAG18:0

20

40

60

80

Temperature, C

Mole fraction

of DAG18:0

100 30 40 50 60 70 80 90 100 0

Temperature, C

0.77

0.89

20

40

60

80

Temperature, C

100

Fig. 1. DSC profiles at a heating rate of 10 °C/min for mixtures of (a) DAG18:0/DAG18:1, (b) DAG18:0/DAG16:0, and (c)

DAG18:1/TAG16:0 at various mole fractions. Filled and open triangles indicate the liquidus and solidus peaks, respectively.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) DAG18:0/DAG12:0

(b) DAG18:0/DAG16:0

(c) DAG18:0/DAG18:1

90

90

90

80

70

NSS model

Experimental liquidus

60

Temperature, C

80

SS model

Temperature, C

Temperature, C

80

70

60

70

60

50

40

30

Experimental solidus

50

50

0.2 0.4 0.6 0.8

Mole fraction of DAG18:0

20

0.2 0.4 0.6 0.8

Mole fraction of DAG18:0

0.2 0.4 0.6 0.8

Mole fraction of DAG18:0

Fig. 2. Experimentally determined liquidus (filled circles) and solidus (open circles) temperatures of various DAG/DAG binary mixtures,

and theoretical liquidus curves calculated using the NSS (solid line) and SS (dashed line) models.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) DAG12:0/MAG12:0

(b) DAG18:0/MAG18:0

(c) DAG18:1/MAG18:1

90

70

50

Experimental liquidus

NSS model

40

40

Temperature, C

Temperature, C

50

Temperature, C

SS model

60

80

70

30

20

Experimental solidus

30

0.2 0.4 0.6 0.8

Mole fraction of DAG12:0

(d) DAG18:0/MAG18:1

0.2 0.4 0.6 0.8

Mole fraction of DAG18:0

0.2 0.4 0.6 0.8

Mole fraction of DAG18:1

(e) DAG18:1/MAG16:0

70

90

80

CF model

60

Temperature, C

Temperature, C

10

60

70

60

50

50

40

30

40

30

20

0.2 0.4 0.6 0.8

Mole fraction of DAG18:0

0.2 0.4 0.6 0.8

Mole fraction of DAG18:1

Fig. 3. Experimentally determined liquidus (filled circles) and solidus (open circles) temperatures of various DAG/MAG binary

mixtures, and theoretical liquidus curves calculated using the NSS (solid line), SS (dashed line), and CF (dashed-dotted line) models.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) TAG18:0/MAG18:0

(b) TAG18:0/MAG12:0

(c) TAG16:0/MAG18:1

70

90

90

80

NSS model

70

60

Experimental liquidus

60

Temperature, C

80

Temperature, C

Temperature, C

SS model

70

60

50

50

40

40

30

30

50

0.2 0.4 0.6 0.8

Mole fraction of TAG18:0

0.2 0.4 0.6 0.8

Mole fraction of TAG18:0

0.2 0.4 0.6 0.8

Mole fraction of TAG16:0

Fig. 4. Experimentally determined liquidus (filled circles) temperatures of various TAG/MAG binary mixtures, and theoretical liquidus

curves calculated using the NSS (solid line) and SS (dashed line) models.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) DAG18:0/TAG16:0

(b) DAG12:0/TAG18:0

90

70

80

70

NSS model

Experimental liquidus

60

Temperature, C

SS model

Temperature, C

60

80

Temperature, C

(c) DAG18:1/TAG16:0

70

60

50

40

30

50

20

50

0.2 0.4 0.6 0.8

Mole fraction of DAG18:0

0.2 0.4 0.6 0.8

Mole fraction of DAG12:0

0.2 0.4 0.6 0.8

Mole fraction of DAG18:1

Fig. 5. Experimentally determined liquidus (filled circles) temperatures of various DAG/TAG binary mixtures, and theoretical liquidus

curves calculated using the NSS (solid line) and SS (dashed line) models.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) DAG18:0/DAG18:1

(b) DAG18:0/MAG18:1

90

40

20

-120 0

Enthalpy, kJ/mol

Temperature, °

Liquidus

60

0.2

0.4

0.6

0.8

Mole fraction of DAG18:0

-90

E nthalpy at liquidus

-60

-30

70

50

30

-120 0

Enthalpy, kJ/mol

Temperature, °

80

0.6

0.8

Mole fraction of DAG18:0

-90

-60

-30

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Mole fraction of DAG18:0

Mole fraction of DAG18:0

(c) TAG16:0/MAG18:1

(d) TAG16:0/DAG18:1

70

70

60

Temperature, °

Temperature, °

0.4

50

40

30

-120 0

0.2

0.4

0.6

0.8

Mole fraction of TAG16:0

-90

-60

-30

60

50

40

30

20

-120 0

Enthalpy, kJ/mol

Enthalpy, kJ/mol

0.2

0.2

0.4

0.6

0.8

Mole fraction of TAG16:0

-90

-60

-30

0.2

0.4

0.6

0.8

Mole fraction of TAG16:0

0.2

0.4

0.6

0.8

Mole fraction of TAG16:0

Fig. 6. Experimentally determined liquidus temperatures (filled circles) and enthalpies of melting at

liquidus (open circles) for various binary mixtures.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 1. Pure materials used in this study and their supplier-guaranteed purities.

Name

Abbreviations

1-monolaurin

MAG12:0

1-monopalmitin

MAG16:0

1-monostearin

MAG18:0

1-monoolein

MAG18:1

1,3-dilaurin

DAG12:0

1,3-dipalmitin

DAG16:0

1,3-distearin

DAG18:0

1,3-diolein

DAG18:1

Tripalmitin

TAG16:0

Tristearin

TAG18:0

Manufacturer

Nu-Chek Prep, Inc., Elysian, MI

Olbracht Serdary Research Laboratories, Toronto, Canada

Purity, % (GC)

99

99

99

99

Nu-Chek Prep, Inc., Elysian, MI

99

99

99

Larodan Fine Chemicals AB, Solna, Sweden

Olbracht Serdary Research Laboratories, Toronto, Canada

99

99

99

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 2. Thermal properties of pure materials determined by DSC (10 °C/min) and the number of UNIFAC functional groups.

Crystal

type

CH3

CH2

CH

CH=CH

OH(p)

OH(s)

CH2COO

Melting

point (°C)

MAG12:0

11

44.8

Enthalpy

of fusion

(kJ mol-1)

22.4

MAG16:0

15

66.4

34.1

MAG18:0

17

74.2

39.2

MAG18:1

15

35.0

49.4

DAG12:0

β1

20

56.7

79.2

DAG16:0

β1

28

73.4

111.4

DAG18:0

β1

32

79.6

130.0

DAG18:1

β1

28

25.8

88.4

TAG16:0

41

63.3

132.4

TAG18:0

47

73.8

181.1

Component

Number of UNIFAC functional groups

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る