リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phylogeny and evolution of mycophagy in Drosophilidae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phylogeny and evolution of mycophagy in Drosophilidae

張, 揚 北海道大学

2022.03.24

概要

Drosophilid flies feed on various substances such as fermenting fruits, mushrooms, flowers, leaves, and so on, and most of the fungus-feeding species are included in the Zygothrica genus group and the quinaria species group of the subgenus Drosophila. Despite numerous phylogenetic studies on the family Drosophilidae, the positions of these two groups are still equivocal. Corroborating the phylogenetic status of these two groups is important for understanding the evolution of mushroom feeding (mycophagy) in the family. In addition, mushrooms produce a defensive chemical compound, α-amanitin, to protect themselves from fungus-feeding insects. A key adaptation for these insects is the ability to cope with the toxicity of their hosts. Several fungus-feeding species from the subgenus Drosophila, especially the quinaria group, are well known to tolerate this fungal toxin. However, it is unknown whether or not species of the Zygothrica genus group and other related species have such tolerance. In these contexts, this study focuses on the phylogeny and evolution of mycophagy and the α-amanitin tolerance in Drosophilidae. The results are described in three chapters:

Chapter 1 focuses on the phylogeny and evolution of mycophagy in the Zygothrica genus group. Up to now, neither the phylogenetic position of the Zygothrica genus group nor the relationships within it have been resolved. Therefore, a phylogenetic analysis was conducted by assembling a DNA-sequence dataset of 24 genes from 92 species, including 42 species of the Zygothrica genus group mainly from the Palearctic and Oriental regions. In addition, the evolution of mycophagy in Drosophilidae is inferred by reconstructing ancestral food habits on the resulting phylogenetic tree. The resulting tree shows that the Zygothrica genus group is monophyletic and placed as the sister to the genus Dichaetophora, and that the clade Zygothrica genus group + Dichaetophora is sister to the Siphlodora + Idiomyia/Scaptomyza clade. Within the Zygothrica genus group, the genera Mycodrosophila and Paramycodrosophila are both recognized as monophyletic, while neither the genus Zygothrica nor Hirtodrosophila is monophyletic. The ancestral reconstruction of food habits shows that fungus-feeding habits have been gained independently in two lineages. The most recent common ancestor (MRCA) of the subgenus Drosophila is estimated to have acquired mycophagy by expanding its ancestral feeding niche on fermenting fruits to decayed fungi, while the MRCA of the Zygothrica genus group may have shifted its niche from fruits to fungi as a specialist probably preferring fresh fruiting bodies.

Chapter 2 addresses a possible effect of nucleotide composition bias on the phylogenetic reconstruction of the quinaria species group of the subgenus Drosophila. In a recent phylogenetic study, the coalescent-based analysis of 43 genes has shown that the quinaria group is not monophyletic, while the concatenated-based analysis has shown the monophyly of it. A possible cause of incongruence may be the difference in GC content at the third codon sites among lineages, since such compositional bias is known to adversely affect the reconstruction of phylogenetic trees. In this chapter, species trees are constructed by the concatenation- and coalescent-based methods, excluding the 3rd codon sites of the nuclear genes from the dataset of the previous study. All the resulting trees represented the monophyly of the quinaria species group, suggesting that the nucleotide compositional bias should be taken into account in phylogenetic reconstruction.`

Chapter 3 focuses on the alpha-amanitin tolerance of Drosophilidae. Previous studies suggest the tightly correlated evolution of this tolerance with mycophagy. To test the hypothesis, the α-amanitin tolerance of adult flies is compared among 16 drosophilid species including mycophagous and non-mycophagous ones. The results are as follows: all the tested mycophagous species are tolerant of this lethal toxin, while the non-mycophagous species cannot survive on a diet containing α-amanitin with two exceptions, generalists Drosophila hydei and Drosophila sternopleuralis. This suggests that the α-amanitin tolerance may have evolved through multiple pathways of food-habit diversification in the family Drosophilidae.

この論文で使われている画像

参考文献

Blom, M.P.K., Bragg, J.G., Potter, S., Moritz, C., 2017. Accounting for uncertainty in gene tree estimation: summary-coalescent species tree inference in a challenging radiation of Australian lizards. Syst. Biol. 66, 352–366.

Boom, R., Sol, C.J.A., Salimans, M.M.M., Jansen, C.L., Wertheim-Van Dillen, P.M.E., Van Der Noordaa, J., 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503.

Carson, H.L., 1971. The ecology of Drosophila breeding sites. Harold L. Lyon Arbor.Lect. No.2.

Da Lage, J.L., Kergoat, G.J., Maczkowiak, F., Silvain, J.F., Cariou, M.L., Lachaise, D., 2007. A phylogeny of Drosophilidae using the Amyrel gene: questioning the Drosophila melanogaster species group boundaries. J. Zool. Syst. Evol. Res. 45, 47–63.

Desalle, R., 1992. The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol. Phylogenet. Evol. 1, 31–40.

Dworkin, I., Jones, C.D., 2009. Genetic changes accompanying the evolution of host specialization in Drosophila sechellia. Genetics 181, 721–736.

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

Edwards, S.V., 2009. Is a new and general theory of molecular systematics emerging? Evolution 63, 1–19.

Ehrlich, P.R., Raven, P.H., 1964. Butterflies and plants: a study in coevolution.Evolution 18, 586-608.

Finet, C., Kassner, V.A., Carvalho, A.B., Chung, H., Day, J.P., Day, S., Delaney, E.K.,De Ré, F.C., Dufour, H.D., Dupim, E., Izumitani, H.F., Gautério, T.B., Justen, J.,Katoh, T., Kopp, A., Koshikawa, S., Longdon, B., Loreto, E.L., Nunes, M.D.S., Raja, K.K.B., Rebeiz, M., Ritchie, M.G., Saakyan, G., Sneddon, T., Teramoto, M., Tyukmaeva, V., Vanderlinde, T., Wey, E.E., Werner, T., Williams, T.M.,Robe, L.J., Toda, M.J., Marlétaz, F., 2021. DrosoPhyla: resources for drosophilid phylogeny and systematics. Genome Biol. Evol. 13, evab179.

Fu, Z., Toda, M.J., Li, N.N., Zhang, Y.P., Gao, J.J. 2016. A new genus of anthophilous drosophilids, Impatiophila (Diptera, Drosophilidae): morphology, DNA barcoding and molecular phylogeny, with descriptions of thirty-nine new species. Zootaxa 4120, 1–100.

Galter, N., Gouy, M., 1995. Inferring phylogenies from DNA sequences of unequal base compositions. Proc. Natl. Acad. Sci. 92, 11317–11321.

Galtier, N., Gouy, M., 1998. Inferring pattern and process: maximum likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol. Biol. Evol. 15, 871–879.

Gao, J.J., Hu, Y.G., Toda, M.J., Katoh, T., Tamura, K., 2011. Phylogenetic relationships between Sophophora and Lordiphosa, with proposition of a hypothesis on the vicariant divergences of tropical lineages between the Old and New Worlds in the family Drosophilidae. Mol. Phylogenet. Evol. 60, 98–107.

Gautério, T.B., Machado, S., Loret o, E.L. da S., Gottschalk, M.S., Robe, L.J., 2020. Phylogenetic relationships between fungus-associated Neotropical species of the genera Hirtodrosophila, Mycodrosophila and Zygothrica (Diptera, Drosophilidae), with insights into the evolution of breeding sites usage. Mol.Phylogenet. Evol. 145, 106733.

Gottschalk, M.S., Bizzo, L., Döge, J.S., Profes, M.S., Hofmann, P.R.P., Valente, V.L.S., 2009. Drosophilidae (Diptera) associated to fungi: differential use of resources in anthropic and atlantic rain forest areas. Iheringia, Sér. Zool. 99, 442–448.

Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224.

Greenleaf, A. L. 1983. Amanitin-resistant RNA polymerase II mutations are in the enzyme's largest subunit. J. Biol. Chem. 258, 13403-13406.

Griffin, L. H., Reed, L.K., 2020. Effect of gut microbiota on α-amanitin tolerance in Drosophila tripunctata. Ecol. Evol. 10, 9419–9427.

Grimaldi, D.A., 1987. Phylogenetics and taxonomy of Zygothrica (Diptera: Drosophilidae). Bull. Am. Museum Nat. Hist. 186, 104–268.

Grimaldi, D.A., 1990a. A phylogenetic, revised classification of the genera in the Drosophilidae (Diptera). Bull. Am. Mus. Nat. Hist. 197, 1–139.

Grimaldi, D.A., 1990b. Revision of Zygothrica (Diptera: Drosophilidae), Part II. The first African species, two new Indo-Pacific groups, and the bilineata and samoaensis species group. Bull. Am. Mus. Novit. 2964, 1–31.

Grimaldi, D.A., 2018. Hirtodrosophila of North America (Diptera: Drosophilidae) .Bull. Am. Museum Nat. Hist. 421, 1–75.

Grimaldi, D.A, Jaenike, J., 1984. Competition in natural populations of mycophagousDrosophila. Ecology 65, 1113–1120.

Hatadani, L.M., McInerney, J. O., de Medeiros, H. F., Junqueira, A. C., deAzeredo-Espin, A. M., Klaczko, L. B., 2009. Molecular phylogeny of the Drosophila tripunctata and closely related species groups (Diptera: Drosophilidae). Mol. Phylogenet. Evol, 51, 595–600.

Howe, G. A., Jander, G., 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66.

Hu, Y.G, Toda, M.J., 2002. Cladistic analysis of the genus Dichaetophora Duda (Diptera: Drosophilidae) and a revised classification. Insect Syst. Evol. 33, 91–102.

Huang, Y., Erezyilmaz, D., 2015. The genetics of resistance to Morinda fruit toxin during the postembryonic stages in Drosophila sechellia. G3 5, 1973–1981.

Ishikawa, S.A., Inagaki, Y., Hashimoto, T., 2012. RY-coding and non-homogeneous models can ameliorate the maximum-likelihood inferences from nucleotide sequence data with parallel compositional heterogeneity. Evol. Bioinform. 8, 357–371.

Izumitani, H.F., Kusaka, Y., Koshikawa, S., Toda, M.J., Katoh, T., 2016.Phylogeography of the subgenus Drosophila (Diptera: Drosophilidae): evolutionary history of faunal divergence between the old and the new worlds. PLoS One 11, e0160051.

Jaenike, J., 1978a. Host selection by mycophagous Drosophila. Ecology 59, 1286–1288.

Jaenike, J., 1978b. Resource predictability and niche breadth in the Drosophila quinaria species group. Evolution 32, 676–678.

Jaenike, J., 1985. Parasite pressure and the evolution of amanitin tolerance in Drosophila. Evolution 39, 1295–1301.

Jaenike, J., Grimaldi, D.A., Sluder, A.E., Greenleaf, A.L., 1983. α-amanitin tolerance in mycophagous Drosophila. Science 221, 165–167.

Jaenike, J., Perlman, S.J., 2002. Ecology and evolution of host-parasite associations: mycophagous Drosophila and their parasitic nematodes. Am Nat, 160, S23–S39.

Jaenike, J., Selander, R.K., 1979. Ecological generalism in Drosophila falleni: genetic evidence. Evolution 33, 741–748.

Jones, C.D., 1998. The genetic basis of Drosophila sechellia’s resistance to a host plant toxin. Genetics 149, 1899–1908.

Junges, J., Robe, L.J., Gottschalk, M.S., 2019. Four new Neotropical species in the Hirtodrosophila hirticornis species group (Diptera: Drosophilidae). Zootaxa 4567, 276–292.

Kadowaki, K., 2010. Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota). Eur. J. Entomol. 107, 89–99.

Katoh, T., Nakaya, D., Tamura, K., Aotsuka, T., 2007. Phylogeny of the Drosophila immigrans species group (Diptera: Drosophilidae) based on Adh and Gpdh sequences . Zoolog. Sci. 24, 913–921.

Katoh, T., Tamura, K., Aotsuka, T., 2000. Phylogenetic position of the subgenus Lordiphosa of the genus Drosophila (Diptera: Drosophilidae) inferred from alcohol dehydrogenase (Adh) gene sequences. J. Mol. Evol. 51, 122–130.

Katoh, T.K., Chen, J.M., Yang, J.H., Zhang, G., Wang, L., Suwito, A., Toda, M.J., Zhang, Y.P., Gao, J.J., 2021. Revision of the genus Dichaetophora Duda (Diptera: Drosophilidae), part I: DNA bar-coding and molecular phylogenetic reconstruction. bioRxiv 2021.05.28.446102.

Kimura, M.T., 1976. Drosophila survey of Hokkaido, XXXII. A field survey of fungus preferences of drosophilid flies in Sapporo. J. Fac. Sci., Hokkaido Univ., VI Zool. 20, 288–298.

Kimura, M.T., 1979. Evolution of food preference in Drosophilidae: an ecological approach. 134 pp. Doctoral Thesis, Hokkaido University, Sapporo.

Kimura, M.T., 1980. Evolution of food preferences in fungus-feeding Drosophila: an ecological study. Evolution 34, 1009–1018.

Kimura, M.T., Toda, M.J., 1989. Food preferences and nematode parasitism in mycophagous Drosophila. Ecol. Res. 4, 209–218.

Kimura, M.T., Toda, M.J., Beppu, K., Watabe, H., 1977. Breeding sites of drosophilid flies in and near Sapporo, northern Japan, with supplementary notes on adult feeding habits. Jpn. J. Entomol. 45, 571–582.

Kingman, J.F.C., 1982. The coalescent. Stoch. Process. Appl. 13, 235–248.

Kondo, M., Kimura, M.T., 2008. Diversity of drosophilid flies on Kume-jima, a subtropical island: comparison with diversity on Iriomote-jima. Entomol. Sci. 11, 7–15.

Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., Stamatakis, A., Wren, J., 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455.

Kück, P., Meusemann, K., 2010. FASconCAT: Convenient handling of data matrices.Mol. Phylogenet. Evol. 56, 1115–1118.

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.

Kwiatowski, J., Ayala, F.J., 1999. Phylogeny of Drosophila and related genera:conflict between molecular and anatomical analyses. Mol. Phylogenet. Evol. 13, 319–328.

Kwiatowski, J., Skarecky, D., Bailey, K., Ayala, F.J., 1994. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu,Zn Sod gene.J. Mol. Evol. 38, 443–454.

Lacy, R.C., 1984. Predictability, toxicity, and trophic niche breadth in fungus feeding Drosophilidae (Diptera). Ecol. Entomol. 9, 43–54.

Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S., 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701.

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2017.Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34,772–773.

Lee, M.S.Y., Hugall, A.F., 2003. Partitioned likelihood support and the evaluation of data set conflict. Syst. Biol. 52, 15–22.

Liu, L., Pearl, D.K., 2007. Species trees from gene trees: reconstructing bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst. Biol. 56, 504–514.

Lindell, T.J., Weinberg, F., Morris, P.W., Roeder, R.G., Rutter, W.J., 1970. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 170, 447–449.

Machado, S., Junges dos Santos, J.P., Fonseca, P.M., Bolzan, A.R., David, J., Loreto,E.L. da S., Gottschalk, M.S., Robe, L.J., 2017. Neotropical mycophagous drosophilids (Diptera: Drosophilidae): DNA barcoding as a way of overcoming the taxonomic impediment. Insect Conserv. Divers. 10, 271–281.

Mai, U., Sayyari, E., Mirarab, S., 2017. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction. PLoS One 12, e0182238.

Markow, T.A., O’Grady, P., 2008. Reproductive ecology of Drosophila. Funct. Ecol.22, 747–759.

Martin, M. M., 1979. Biochemical implications of insect mycophagy. Biol. Rev.Camb. Philos. Soc. 54, 1–21.

Mas, A., 2005. Mushrooms, amatoxins and the liver. J. Hepatol. 42, 166–169. McEvey, S.F., Polak, M., 2005. Mycodrosophila (Diptera: Drosophilidae) of Fiji andVanuatu with description of nine new species. Fiji Arthropods II. Bishop Museum Occasional Papers 84, 35–67.

Mendes, M.F., Valer, F.B., Vieira, J.G.A., Blauth, M.L., Gottschalk, M.S., 2017.Diversity of Drosophilidae (Insecta, Diptera) in the Restinga forest of southern Brazil. Rev. Bras. Entomol. 61, 248–256.

Mooers, A. Ø. and Holmes E.C., 2000. The evolution of base composition and phylogenetic inference. Trends Ecol. Evol. 15, 356–365.

Morales-Hojas, R., Vieira, J., 2012. Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila. PLoS One 7, e49552.

O’Grady, P.M., DeSalle, R., 2018. Phylogeny of the genus Drosophila. Genetics 209, 1–25.

O’Grady, P.M., Lapoint, R.T., Bennett, G.M., 2008. The potential and peril of the supertree approach: a response to van der Linde and Houle. Insect Syst. Evol. 39, 269–280.

Okada, T., 1956. Systematic Study of Drosophilidae and Allied Families of Japan.183 pp. Gihodo, Tokyo.

Okada, T., 1986. The genus Mycodrosophila Oldenberg (Diptera, Drosophilidae) of Southeast Asia and New Guinea. I. Typical species. Kontyû 54, 112 –123.

Perlman, S.J., Jaenike, J., 2003. Infection success in novel hosts: an experimental and phylogenetic study of Drosophila-parasitic nematodes. Evolution 57, 544–557.

Phillips, M.J., Penny, D., 2003. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol. Phylogenet. Evol. 28, 171–185.

Phillips, M.J., Zakaria, S.S. 2021. Enhancing mitogenomic phylogeny and resolving the relationships of extinct megafaunal placental mammals. Mol. Phylogenet. Evol. 158, 107082.

Powell, J.R., 1997. Progress and prospects in evolutionary biology: the Drosophila model. New York, Oxford University Press.

Prigent, S., Renard, E., Cariou, M.L., 2003. Electrophoretic mobility of amylase in Drosophilids indicates adaptation to ecological diversity. Genetica 119, 133–145.

Prigent, S.R., Toda, M.J., 2006. A revision of the Zygothrica samoaensis species group (Diptera: Drosophilidae), with division into three species subgroups and description of five new species. Entomol. Sci. 9, 191–215.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:https://www.R-project.org/.

Rambaut, A., 2018. FigTree V1.4.4. https://github.com/rambaut/figtree.

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904.

Rannala, B., Yang, Z., 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656.

Remsen, J., O’Grady, P., 2002. Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support. Mol. Phylogenet.Evol. 24, 249–264.

Robe, L.J., Valente, V.L.S., Budnik, M., Loreto, É.L.S., 2005. Molecular phylogeny of the subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on Neotropical species and groups: a nuclear versus mitochondrial gene approach. Mol. Phylogenet. Evol. 36, 623–640.

Rodriguez-Trelles, F., Tarrio, R., Ayala, F. J., 1999. Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group. Genetics 153, 339–350.

Rodriguez-Trelles, F., Tarrio, R., Ayala, F. J., 2000a. Fluctuating mutation bias and the evolution of the base composition in Drosophila. J. Mol. Evol. 50, 1–10.

Rodriguez-Trelles, F., Tarrio, R., Ayala, F. J., 2000b. Eidence for a high ancestral GC content in Drosophila. Mol. Biol. Evol. 17, 1710–1717.

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.

Russo, C.A.M., Mello, B., Frazão, A., Voloch, C.M., 2013. Phylogenetic analysis and a time tree for a large drosophilid data set (Diptera: Drosophilidae). Zool. J. Linn. Soc. 169, 765–775.

Santa-Brígida, R., Wartchow, F., Medeiros, P.S., Gottschalk, M.S., Martins, M.B., de Carvalho, C.J.B., 2019. Mycophagous Drosophilidae (Diptera) guild and their hosts in the Brazilian Amazon. Pap. Avulsos Zool. 59, 0–4.

Santos, R. de C.O. dos, Vilela, C.R., 2005. Breeding sites of Neotropical Drosophilidae (Diptera): IV. living and fallen flowers of Sessea brasiliensis and Cestrum spp. (Solanaceae). Rev. Bras. Entomol. 49, 544–551.

Satomura, K., Tamura, K., 2016. Ancient male recombination shaped genetic diversity of neo-Y chromosome in Drosophila albomicans. Mol. Biol. Evol. 33, 367–374.

Sayyari, E., Mirarab, S., 2016. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33, 1654–1668.

Scott Chialvo, C.H., White, B.E., Reed, L.K., Dyer, K.A., 2019. A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila. Mol. Phylogenet. Evol. 130, 233–243.

Shen, X.-X., Steenwyk, J.L., Rokas, A., 2021. Dissecting incongruence between concatenation- and quartet-based approaches in phylogenomic data. Syst. Biol. syab011.

Shorrocks, B., 1982. The breeding sites of temperate woodland Drosophila. In: Ashburner MA, Carson HL, Thompson JN (eds), The Genetics and Biology of Drosophila, Vol. 3b, pp. 385–428. Academic Press, London.

Simmons, M.P., Kessenich, J., 2020. Divergence and support among slightly suboptimal likelihood gene trees. Cladistics 36, 322–340.

Spicer, G.S., Jaenike, J., 1996. Phylogenetic analysis of breeding site use and α-Amanitin tolerance within the Drosophila quinaria species group. Evolution 50, 2328–2337.

Springer, M.S., Gatesy, J., 2016. The gene tree delusion. Mol. Phylogenet. Evol. 94, 1–33.

Stump, A.D., Jablonski, S.E., Bouton, L., Wilder, J.A., 2011. Distribution and mechanism of α-Amanitin tolerance in mycophagous Drosophila (Diptera: Drosophilidae). Environ. Entomol. 40, 1604–1612.

Sturtevant, A.H., 1921. The North American species of Drosophila. Publications of the Carnegie Institute of Washington, pp. 1–150.

Sturtevant, A.H., 1942. The classification of the genus Drosophila, with descriptions of nine new species. Univ. Texas Publ. 4213, 5–51.

Swofford, D.L., 2002. PAUP*: Phylogenetic Analysis Using Parsimony* (*and other methods) v4.0b10. Sinauer Associates, Sunderland.

Takahashi, K.H., Tuno, N., Kagaya, T., 2005. The relative importance of spatial aggregation and resource partitioning on the coexistence of mycophagous insects. Oikos 109, 125–134.

Tarrio, R., Rodriguez-Trelles, F., Ayala, F. J., 2001. Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. Mol. Biol. Evol. 18, 1464–1473.

Tatarenkov, A., Zurovcová, M ., Ayala, F.J., 2001. Ddc and amd sequences resolve phylogenetic relationships of Drosophila. Mol. Phylogenet. Evol. 20, 321–325.

Throckmorton, L.H., 1962. The problem of phylogeny in the genus Drosophila. Univ.

Texas Publ. 6205, 207–343.

Throckmorton, L.H., 1975. The Phylogeny, Ecology, and Geography of Drosophila.Handbook of Genetics, edited by R.C. King. Plenum Publishing Corporation, New York, pp. 421–469. Springer US.

Toda, M.J., 2021. DrosWLD: Taxonomic Information Database for World Species of Drosophilidae. Hokkaido University, Sapporo. Available from URL: https://bioinfo.museum.hokudai.ac.jp/db/

Toda, M.J., Kimura, M.T., 1997. Life-history traits related to host selection in mycophagous drosophilids. J. Anim. Ecol. 66, 154–166.

Toda, M.J., Riihimaa, A. Fuyama, Y., 1987. Additional notes on drosophilid flies (Diptera, Drosophilidae) in the Bonin Islands, with descriptions of two new species. Kontyû 55, 240 –258.

Tuno, N., Takahashi, K.H., Yamashita, H., Osawa, N., Tanaka, C., 2007. Tolerance ofDrosophila flies to ibotenic acid poisons in mushrooms. J. Chem. Ecol. 33, 311–317.

Valadão, H., Proença, C.E.B., Kuhlmann, M.P., Harris, S.A., Tidon, R., 2019.Fruit-breeding drosophilids (Diptera) in the Neotropics: playing the field and specialising in generalism? Ecol. Entomol. 44, 721–737.

Valer, F.B., Bernardi, E., Mendes, M.F., Blauth, M.L., Gottschalk, M.S., 2016.Diversity and associations between Drosophilidae (Diptera) species and basidiomycetes in a neotropical forest. An. Acad. Bras. Cienc. 88, 705–718.

van der Linde, K., Houle, D., 2008. A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae). Insect Syst. Evol. 39, 241–267.

van der Linde, K., Houle, D., Spicer, G.S., Steppan, S.J., 2010. A supermatrix-based molecular phylogeny of the family Drosophilidae. Genet. Res., Camb. 92, 25–38.

Wheeler, M.R., Takada, H., 1963. A revision of the American species ofMycodrosophila (Diptera; Drosophilidae). Ann. Entomol. Soc. Am. 56, 392–399.

Wieland, T., 1968. Poisonous principles of mushrooms of the genus Amanita: four-carbon amines acting on the central nervous system and cell-destroying cyclic peptides are produced. Science 159, 946–952.

Yassin, A., 2013. Phylogenetic classification of the Drosophilidae Rondani (Diptera): the role of morphology in the postgenomic era. Syst. Entomol. 38, 349–364.

Yassin, A., Debat, V., Bastide, H., Gidaszewski, N., David, J.R., Pool, J.E., 2016. Recurrent specialization on a toxic fruit in an island Drosophila population. PNAS 113, 4771–76.

Yorozuya, H., 2006. Effects of parasitoids on a mycophagous drosophilid community in northern Japan and an evaluation of the disproportionate parasitism hypothesis. Entomol. Sci. 9, 13–22.

Yorozuya, H., 2009. Effects of nematode parasitism on mycophagous drosophilid species in northern Japan. Entomol. Sci. 12, 363–369.

Yu, Y., Blair, C., He, X., 2020. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604-–606.

Yu, Y., Harris, A.J., Blair, C., He, X., 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49.

Zhang, C., Rabiee, M., Sayyari, E., Mirarab, S., 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19 (S6).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る