リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oxidation Resistance Improvement of Graphene-Oxide-Semiconductor Planar-Type Electron Sources Using h-BN as an Oxygen-Resistant, Electron-Transmissive Coating」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oxidation Resistance Improvement of Graphene-Oxide-Semiconductor Planar-Type Electron Sources Using h-BN as an Oxygen-Resistant, Electron-Transmissive Coating

Naoyuki Matsumoto Yoshinori Takao 80552661 Masayoshi Nagao 80357607 Katsuhisa Murakami 20403123 横浜国立大学

2022.09.06

概要

Graphene–oxide–semiconductor (GOS) planar-type electron emission devices with a hexagonal boron nitride (h-BN) protective layer have demonstrated improved oxidation resistance while maintaining their emission performance. The devices with a monolayer or a multilayer (13 nm in thickness) h-BN protective layer can emit electrons even after oxygen plasma exposure (ashing). Remarkably, the device with a monolayer h-BN was able to emit electrons with a maximum efficiency of 11% after a 4-min ashing, showing that a thin h-BN protection layer can provide oxygen tolerance to GOS devices without a significant emission loss. The thicker multilayer h-BN imparted higher oxidation resistance to the device but with decreased emission efficiency compared with the device with monolayer h-BN. Thus, the use of h-BN necessitates a trade-off between the device’s emission performance and its oxidation resistance. In addition, the etching rate of h-BN by the oxygen plasma treatment was found to increase by exposure to air after the first plasma treatment, which indicates that the adherence of H2O to the surface of h-BN is one probable cause of h-BN etching during the ashing process.

参考文献

(1) Kusunoki, T.; Suzuki, M.; Sasaki, S.; Yaguchi, T.; Aida, T. Fluctuation-Free Electron Emission from Non-Formed Metal- Insulator-Metal (MIM) Cathodes Fabricated by Low Current Anodic Oxidation. Jpn. J. Appl. Phys. 1993, 32, L1695−L1697.

(2) Shimawaki, H.; Neo, Y.; Mimura, H.; Murakami, K.; Wakaya, F.; Takai, M. Improvement of emission efficiency of nanocrystalline silicon planar cathodes. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 2008, 26, 864−867.

(3) Yokoo, K.; Tanaka, H.; Sato, S.; Murota, J.; Ono, S. Emission characteristics of metal−oxide−semiconductor electron tunneling cathode. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 1993, 11, 429−432.

(4) Ohta, T.; Kojima, A.; Koshida, N. Emission characteristics of nanocrystalline porous silicon ballistic cold cathode in atmospheric ambience. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 2007, 25, 524−527.

(5) Koshida, N.; Ohta, T.; Gelloz, B. Operation of nanosilicon ballistic electron emitter in liquid water and hydrogen generation effect. Appl. Phys. Lett. 2007, 90, No. 163505.

(6) Murakami, K.; Tanaka, S.; Miyashita, A.; Nagao, M.; Nemoto, Y.; Takeguchi, M.; Fujita, J. Graphene-oxide-semiconductor planar- type electron emission device. Appl. Phys. Lett. 2016, 108, No. 083506.

(7) Murakami, K.; Tanaka, S.; Iijima, T.; Nagao, M.; Nemoto, Y.; Takeguchi, M.; Yamada, Y.; Sasaki, M. Electron emission properties of graphene-oxide-semiconductor planar-type electron emission devices. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2018, 36, No. 02C110.

(8) Murakami, K.; Miyaji, J.; Furuya, R.; Adachi, M.; Nagao, M.; Neo, Y.; Takao, Y.; Yamada, Y.; Sasaki, M.; Mimura, H. High- performance planar-type electron source based on a graphene-oxide- semiconductor structure. Appl. Phys. Lett. 2019, 114, No. 213501.

(9) Murakami, K.; Adachi, M.; Miyaji, J.; Furuya, R.; Nagao, M.; Yamada, Y.; Neo, Y.; Takao, Y.; Sasaki, M.; Mimura, H. Mechanism of Highly Efficient Electron Emission from a Graphene/Oxide/Semi- conductor Structure. ACS Appl. Electron. Mater. 2020, 2, 2265−2273.

(10) Furuya, R.; Takao, Y.; Nagao, M.; Murakami, K. Low-power- consumption, high-current-density, and propellantless cathode using graphene-oxide-semiconductor structure array. Acta Astronaut. 2020, 174, 48−54.

(11) Miyaji, J.; Murakami, K.; Nagao, M.; Neo, Y.; Mimura, H. In Evaluation of Electron Emission Properties of Graphene-oxide-silicon Planar Type Cold Cathode for an Electron Microscope, 31st Interna- tional Vacuum Nanoelectronics Conference (IVNC), Kyoto201812; IEEE, 2018.

(12) Kameda, Y.; Murakami, K.; Nagao, M.; Mimura, H.; Neo, Y. In Microscope Equipped with Graphene-oxide-semiconductor Electron Source, 34th International Vacuum Nanoelectronics Conference (IVNC), Lyon; IEEE, 2021; pp 1−2.

(13) Kimoto, Y.; Miyazaki, E.; Ishizawa, J.; Shimamura, H. Atomic Oxygen Effects on Space Materials in Low Earth Orbit and Its Ground Evaluation. J. Vac. Soc. Jpn. 2009, 52, 475−483.

(14) Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano 2014, 8, 1457−1462.

(15) Cheng, L.; Shi, Y.; Hao, Y.; Li, W.; Ren, S.; Wang, L. Multilayer boron nitride nanofilm as an effective barrier for atomic oxygen irradiation. Appl. Surf. Sci. 2020, 504, No. 144394.

(16) Liu, Z.; Gong, Y.; Zhou, W.; Ma, L.; Yu, J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J.; Ajayan, P. M. Ultrathin high- temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, No. 2541.

(17) Li, X.; Yin, J.; Zhou, J.; Guo, W. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 2014, 25, No. 105701.

(18) Murakami, K.; Igari, T.; Mitsuishi, K.; Nagao, M.; Sasaki, M.; Yamada, Y. Highly Monochromatic Electron Emission from Graphene/Hexagonal Boron Nitride/Si Heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 4061−4067.

(19) Igari, T.; Nagao, M.; Mitsuishi, K.; Sasaki, M.; Yamada, Y.; Murakami, K. Origin of Monochromatic Electron Emission From Planar-Type Graphene/h-BN/n-Si Devices. Phys. Rev. Appl. 2021, 15, No. 014044.

(20) Kern, W.; Puotinen, D. A. Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology. RCA Rev. 1970, 31, 187−206.

(21) Kern, W. The Evolution of Silicon Wafer Cleaning Technology. J. Electrochem. Soc. 1990, 137, 1887−1892.

(22) Liu, Z.; Song, L.; Zhao, S.; Huang, J.; Ma, L.; Zhang, J.; Lou, J.; Ajayan, P. M. Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers. Nano Lett. 2011, 11, 2032−2037.

(23) Elbadawi, C.; Tran, T. T.; Kolibal, M.; Sikola, T.; Scott, J.; Cai, Q.; Li, L. H.; Taniguchi, T.; Watanabe, K.; Toth, M.; Aharonovich, I.; Lobo, C. Electron beam directed etching of hexagonal boron nitride. Nanoscale 2016, 8, 16182−16186.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る