リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Systemic Supplementation of Collagen VI by Neonatal Transplantation of iPSC-Derived MSCs Improves Histological Phenotype and Function of Col6-Deficient Model Mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Systemic Supplementation of Collagen VI by Neonatal Transplantation of iPSC-Derived MSCs Improves Histological Phenotype and Function of Col6-Deficient Model Mice

Harada, Aya 京都大学 DOI:10.14989/doctor.k23770

2022.03.23

概要

ウールリッヒ型先天性筋ジストロフィー(UCMD)は、COL6遺伝子変異に起因する筋疾患の最重症型であり、6型コラーゲン異常により筋肉や関節を中心に全身性の症状を呈するが有効な治療法はいまだ確立されていない。骨格筋において6型コラーゲンは間葉系間質細胞により産生されているため、間葉系間質細胞移植により全身性に6型コラーゲンを補充することが治療の選択肢になりうると考え、免疫不全モデルマウスを用いて、その治療効果の検証およびその作用機序について検討した。

まず、生後2日目の免疫不全UCMDモデル(Col6a1KO/NSG)マウスに、5x106個のヒトiPS細胞由来間葉系間質細胞(iMSC)を腹腔内投与し、移植細胞の体内の動態および6型コラーゲンの発現について観察すると、脳を除く臓器に移植細胞が分布すること、投与7日以降より免疫染色で大腿四頭筋や横隔膜に6型コラーゲンが発現することを確認した。4週齢になると移植マウスにおいて大腿四頭筋の筋線維径が非移植マウスに比較して増大することが確認できたが、それ以外の治療効果が乏しかったため、4週齢時に再度5x106個のiMSCを腹腔内移植し8週齢に解析を行った。新生児期および4週齢で移植をうけたCol6a1KO/NSGマウスは、非治療マウスと比較して、8週齢には前脛骨筋や腓腹筋などの筋重量が増加し、大腿四頭筋の筋線維径が増加し、筋組織内の線維化は有意に減少した。次に、先行研究よりCol6a1KO/NSGマウスに対するiMSCの筋肉内への局所投与が筋再生を促進することが知られていたため、MYH3陽性の再生筋線維に着目すると、非移植マウスでは再生筋が成熟できず筋径が細いままで中心核が単核のものが多いのに対し、移植マウスではより太く成熟したものや中心核が多核の筋線維数の割合が増え、様々な再生過程の組織像が混在する様子が観察された。経時的に筋再生能力を評価したところ、4週齢では、移植治療の有無にかかわらず同程度に筋再生が亢進していたが、8週齢になると非移植マウスでは筋再生能力がほぼ消失しているのに対し、移植マウスではこれをある程度維持していた。結果として、前脛骨筋の筋線維数を比較すると、4週齢では差がみられないが、4週から8週齢の間に移植マウスでは筋線維数が増加するが、非移植マウスではこれが減少していた。

また、UCMDの筋組織では異常なミトコンドリアの蓄積やアポトーシスの増加がみられるという既報を参考に、これらの病態が移植により改善するのかについても検討した。8週齢の大腿四頭筋や横隔膜において非移植マウスにおいて散見される異常ミトコンドリアは、移植マウスにおいてほぼ消失していた。また、TUNEL染色やssDNAの免疫染色により、移植マウスの横隔膜においてアポトーシスが有意に減少していることも確認した。

これらの結果として、8週齢の移植マウスでは麻酔下で測定した下腿三頭筋の等尺性筋力、握力、ロタロッドテストにおいて運動機能の改善を認めた。

以上より、iMSCの全身投与がUCMDモデルマウス骨格筋への6型コラーゲンの補充を可能にし、そのことがUCMDに特徴的な組織学的特徴や運動機能を改善することから、iMSC投与がUCMDに対する治療法となりうる可能性が示唆された。再生筋が成熟できないことがCol6KOマウスに特徴的な病態の一つであり、補充された6型コラーゲンは、再生筋の成熟を促し細い再生筋を太くする、組織内環境を改善しアポトーシスを抑制するなど様々な作用点を通して、治療効果を生んだと考えられる。

この論文で使われている画像

参考文献

Alexeev, V., Arita, M., Donahue, A., Bonaldo, P., Chu, M.-L., and Igoucheva, O. (2014). Human Adipose-Derived Stem Cell Transplantation as a Potential Therapy for Collagen VI-related Congenital Muscular Dystrophy. Stem Cel Res. Ther. 5, 21. doi:10.1186/scrt411

Angelin, A., Tiepolo, T., Sabatelli, P., Grumati, P., Bergamin, N., Golfieri, C., et al. (2007). Mitochondrial Dysfunction in the Pathogenesis of Ullrich Congenital Muscular Dystrophy and Prospective Therapy with Cyclosporins. Pnas 104, 991–996. doi:10.1073/pnas.0610270104

Baghdadi, M. B., Castel, D., Machado, L., Fukada, S.-i., Birk, D. E., Relaix, F., et al. (2018). Reciprocal Signalling by Notch-Collagen V-CALCR Retains Muscle Stem Cells in Their Niche. Nature 557, 714–718. doi:10.1038/s41586-018-0144-9

Bernardi, P., and Bonaldo, P. (2008). Dysfunction of Mitochondria and Sarcoplasmic Reticulum in the Pathogenesis of Collagen VI Muscular Dystrophies. Ann. N. Y. Acad. Sci. 1147, 303–311. doi:10.1196/annals.1427.009

Bernardi, P., and Bonaldo, P. (2013). Mitochondrial Dysfunction and Defective Autophagy in the Pathogenesis of Collagen VI Muscular Dystrophies. Cold Spring Harbor Perspect. Biol. 5, a011387. doi:10.1101/cshperspect.a011387

Bolduc, V., Foley, A. R., Solomon-Degefa, H., Sarathy, A., Donkervoort, S., Hu, Y., et al. (2019). A Recurrent COL6A1 Pseudoexon Insertion Causes Muscular Dystrophy and Is Effectively Targeted by Splice-Correction Therapies. JCI insight 4, e124403. doi:10.1172/jci.insight.124403

Bolduc, V., Zou, Y., Ko, D., and Bönnemann, C. G. (2014). siRNA-Mediated Allelespecific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy. Mol. Ther. - Nucleic Acids 3, e147. doi:10.1038/ mtna.2013.74

Bonaldo, P., Braghetta, P., Zanetti, M., Piccolo, S., Volpin, D., and Bressan, G. M. (1998). Collagen VI Deficiency Induces Early Onset Myopathy in the Mouse: an Animal Model for Bethlem Myopathy. Hum. Mol. Genet. 7, 2135–2140. doi:10.1093/hmg/7.13.2135

Bönnemann, C. G. (2011). The Collagen VI-related Myopathies. Handb. Clin. Neurol. 101, 81–96. doi:10.1016/B978-0-08-045031-5.00005-0

Castagnaro, S., Pellegrini, C., Pellegrini, M., Chrisam, M., Sabatelli, P., Toni, S., et al. (2016). Autophagy Activation in COL6 Myopathic Patients by a Low Protein-Diet Pilot Trial. Autophagy 12, 2484–2495. doi:10.1080/15548627.2016.1231279

Cattaruzza, S., Nicolosi, P. A., Braghetta, P., Pazzaglia, L., Benassi, M. S., Picci, P., et al. (2013). NG2/CSPG4-collagen Type VI Interplays Putatively Involved in the Microenvironmental Control of Tumour Engraftment and Local Expansion. J. Mol. Cel Biol. 5, 176–193. doi:10.1093/jmcb/mjt010

Chal, J., and Pourquié, O. (2017). Making Muscle: Skeletal Myogenesis In Vivo and In Vitro. Development 144, 2104–2122. doi:10.1242/dev.151035

Chijimatsu, R., Ikeya, M., Yasui, Y., Ikeda, Y., Ebina, K., Moriguchi, Y., et al. (20172017). Characterization of Mesenchymal Stem Cell-like Cells Derived from Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair. Stem Cell Int. 2017, 1–18. doi:10.1155/2017/1960965

Doane, K. J., Howell, S. J., and Birk, D. E. (1998). Identification and Functional Characterization of Two Type VI Collagen Receptors, Alpha 3 Beta 1 Integrin and NG2, during Avian Corneal Stromal Development. Invest. Ophthalmol. Vis.Sci. 39, 263–275.

Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., Nagata, S., et al. (2014). Derivation of Mesenchymal Stromal Cells from Pluripotent Stem Cells through a Neural Crest Lineage Using Small Molecule Compounds with Defined media. PLoS One 9, e112291. doi:10.1371/journal.pone.0112291

Gattazzo, F., Molon, S., Morbidoni, V., Braghetta, P., Blaauw, B., Urciuolo, A., et al. (2014). Cyclosporin A Promotes In Vivo Myogenic Response in Collagen VIDeficient Myopathic Mice. Front. Aging Neurosci. 6, 244. doi:10.3389/fnagi.2014.00244

Gnocchi, V. F., White, R. B., Ono, Y., Ellis, J. A., and Zammit, P. S. (2009). Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells. PLoS One 4, e5205. doi:10.1371/journal.pone.0005205

Gokhin, D. S., Ward, S. R., Bremner, S. N., and Lieber, R. L. (2008). Quantitative Analysis of Neonatal Skeletal Muscle Functional Improvement in the Mouse. J. Exp. Biol. 211, 837–843. doi:10.1242/jeb.014340

Götherström, C., Westgren, M., Shaw, S. W. S., Åström, E., Biswas, A., Byers, P. H., et al. (2014). Pre- and Postnatal Transplantation of Fetal Mesenchymal Stem Cells in Osteogenesis Imperfecta: a Two-center Experience. Stem Cell translational Med. 3, 255–264. doi:10.5966/sctm.2013-0090

Gourraud, P.-A., Gilson, L., Girard, M., and Peschanski, M. (2012). The Role of Human Leukocyte Antigen Matching in the Development of Multiethnic "haplobank" of Induced Pluripotent Stem Cell Lines. Stem Cells 30, 180–186. doi:10.1002/stem.772

Grumati, P., Coletto, L., Sabatelli, P., Cescon, M., Angelin, A., Bertaggia, E., et al. (2010). Autophagy Is Defective in Collagen VI Muscular Dystrophies, and its Reactivation Rescues Myofiber Degeneration. Nat. Med. 16, 1313–1320. doi:10.1038/nm.2247

Guillot, P. V., Abass, O., Bassett, J. H. D., Shefelbine, S. J., Bou-Gharios, G., Chan, J., et al. (2008). Intrauterine Transplantation of Human Fetal Mesenchymal Stem Cells from First-Trimester Blood Repairs Bone and Reduces Fractures in Osteogenesis Imperfecta Mice. Blood 111, 1717–1725. doi:10.1182/blood2007-08-105809

Hata, T., Kanenishi, K., Mori, N., AboEllail, M. A. M., Hanaoka, U., Koyano, K., et al. (2018). Prediction of Postnatal Developmental Disabilities Using the Antenatal Fetal Neurodevelopmental Test: KANET Assessment. J. Perinat. Med. 47, 77–81. doi:10.1515/jpm-2018-0169

Hicks, D., Lampe, A. K., Laval, S. H., Allamand, V., Jimenez-Mallebrera, C., Walter, M. C., et al. (2009). Cyclosporine A Treatment for Ullrich Congenital Muscular Dystrophy: a Cellular Study of Mitochondrial Dysfunction and its rescue. Brain 132, 147–155. doi:10.1093/brain/awn289

Higuchi, I., Horikiri, T., Niiyama, T., Suehara, M., Shiraishi, T., Hu, J., et al. (2003). Pathological Characteristics of Skeletal Muscle in Ullrich’s Disease with Collagen VI Deficiency. Neuromuscul. Disord. 13, 310–316. doi:10.1016/ s0960-8966(02)00282-1

Irwin, W. A., Bergamin, N., Sabatelli, P., Reggiani, C., Megighian, A., Merlini, L., et al. (2003). Mitochondrial Dysfunction and Apoptosis in Myopathic Mice with Collagen VI Deficiency. Nat. Genet. 35, 367–371. doi:10.1038/ng1270

Itoh, Y., Murakami, T., Mori, T., Agata, N., Kimura, N., Inoue-Miyazu, M., et al. (2017). Training at Non-damaging Intensities Facilitates Recovery from Muscle Atrophy. Muscle Nerve 55, 243–253. doi:10.1002/mus.25218

Jerkovic, R., Argentini, C., Serrano-Sanchez, A., Cordonnier, C., and Schiaffino, S. (1997). Early Myosin Switching Induced by Nerve Activity in Regenerating Slow Skeletal Muscle. Cell Struct. Funct. 22, 147–153. doi:10.1247/csf.22.147

Kalhovde, J. M., Jerkovic, R., Sefland, I., Cordonnier, C., Calabria, E., Schiaffino, S., et al. (2005). ’Fast’ and ’slow’ Muscle Fibres in Hindlimb Muscles of Adult Rats Regenerate from Intrinsically Different Satellite Cells. J. Physiol. 562, 847–857. doi:10.1113/jphysiol.2004.073684

Kanaoka, M., Yamaguchi, Y., Komitsu, N., Feghali-Bostwick, C. A., Ogawa, M., Arima, K., et al. (2018). Pro-fibrotic Phenotype of Human Skin Fibroblasts Induced by Periostin via Modulating TGF-β Signaling. J. Dermatol. Sci. 90, 199–208. doi:10.1016/j.jdermsci.2018.02.001

Karagiannis, P., Takahashi, K., Saito, M., Yoshida, Y., Okita, K., Watanabe, A., et al. (2019). Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol. Rev. 99, 79–114. doi:10.1152/ physrev.00039.2017

Lamandé, S. R., and Bateman, J. F. (2018). Collagen VI Disorders: Insights on Form and Function in the Extracellular Matrix and beyond. Matrix Biol. 71-72, 348–367. doi:10.1016/j.matbio.2017.12.008

Lamandé, S. R., Bateman, J. F., Hutchison, W., Gardner, R. J. M., Bower, S. P., Byrne, E., et al. (1998). Reduced Collagen VI Causes Bethlem Myopathy: a Heterozygous COL6A1 Nonsense Mutation Results in mRNA Decay and Functional Haploinsufficiency. Hum. Mol. Genet. 7, 981–989. doi:10.1093/hmg/7.6.981

Lampe Ak, F. K., and Bushby, K. M. (2004). “Collagen Type VI-Related Disorders,” in GeneReviews® [Internet]. MP Adam, HH Ardinger, RA Pagon, S. E. Wallace, L. J. H. Bean, G. Mirzaa, et al. (Seattle (WA): University of Washington, Seattle), 1993–2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1503/.

Li, C., Gao, H. L., Shimokawa, T., Nabeka, H., Hamada, F., Araki, H., et al. (2013). Prosaposin Expression in the Regenerated Muscles of Mdx and CardiotoxinTreated Mice. Histol. Histopathol. 28, 875–892. doi:10.14670/hh-28.875

Marrosu, E., Ala, P., Muntoni, F., and Zhou, H. (2017). Gapmer Antisense Oligonucleotides Suppress the Mutant Allele of COL6A3 and Restore Functional Protein in Ullrich Muscular Dystrophy. Mol. Ther. - Nucleic Acids 8, 416–427. doi:10.1016/j.omtn.2017.07.006

Matsumoto, Y., Ikeya, M., Hino, K., Horigome, K., Fukuta, M., Watanabe, M., et al. (2015). New Protocol to Optimize iPS Cells for Genome Analysis of Fibrodysplasia Ossificans Progressiva. Stem Cells 33, 1730–1742. doi:10.1002/stem.1981

Merlini, L., Angelin, A., Tiepolo, T., Braghetta, P., Sabatelli, P., Zamparelli, A., et al. (2008). Cyclosporin A Corrects Mitochondrial Dysfunction and Muscle Apoptosis in Patients with Collagen VI Myopathies. Pnas 105, 5225–5229. doi:10.1073/pnas.0800962105

Merlini, L., Sabatelli, P., Armaroli, A., Gnudi, S., Angelin, A., Grumati, P., et al. (20112011). Cyclosporine A in Ullrich Congenital Muscular Dystrophy: LongTerm Results. Oxidative Med. Cell Longevity 2011, 1–10. doi:10.1155/2011/139194

Nadeau, A., Kinali, M., Main, M., Jimenez-Mallebrera, C., Aloysius, A., Clement, E., et al. (2009). Natural History of Ullrich Congenital Muscular Dystrophy.

Neurology 73, 25–31. doi:10.1212/WNL.0b013e3181aae851 Noguchi, S., Ogawa, M., Kawahara, G., Malicdan, M. C., and Nishino, I. (2014). Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts. Mol. Ther. - Nucleic Acids 3, e171. doi:10.1038/mtna.2014.22

Noguchi, S., Ogawa, M., Malicdan, M. C., Nonaka, I., and Nishino, I. (2017). Muscle Weakness and Fibrosis Due to Cell Autonomous and Non-cell Autonomous Events in Collagen VI Deficient Congenital Muscular Dystrophy. EBioMedicine 15, 193–202. doi:10.1016/j.ebiom.2016.12.011

Paco, S., Ferrer, I., Jou, C., Cusí, V., Corbera, J., Torner, F., et al. (2012). Muscle Fiber Atrophy and Regeneration Coexist in Collagen VI-Deficient Human Muscle: Role of Calpain-3 and Nuclear Factor-Κb Signaling. J. Neuropathol. Exp. Neurol. 71, 894–906. doi:10.1097/ NEN.0b013e31826c6f7b

Palma, E., Tiepolo, T., Angelin, A., Sabatelli, P., Maraldi, N. M., Basso, E., et al. (2009). Genetic Ablation of Cyclophilin D Rescues Mitochondrial Defects and

Prevents Muscle Apoptosis in Collagen VI Myopathic Mice. Hum. Mol. Genet. 18, 2024–2031. doi:10.1093/hmg/ddp126

Roman, W., and Gomes, E. R. (2018). Nuclear Positioning in Skeletal Muscle.

Semin. Cel Develop. Biol. 82, 51–56. doi:10.1016/j.semcdb.2017.11.005

Schiaffino, S., Rossi, A. C., Smerdu, V., Leinwand, L. A., and Reggiani, C. (2015). Developmental Myosins: Expression Patterns and Functional Significance. Skeletal muscle 5, 22. doi:10.1186/s13395-015-0046-6

Takenaka-Ninagawa, N., Kim, J., Zhao, M., Sato, M., Jonouchi, T., Goto, M., et al. (2021). Collagen-VI Supplementation by Cell Transplantation Improves Muscle Regeneration in Ullrich Congenital Muscular Dystrophy Model Mice. Stem Cel. Res. Ther. 12, 446. doi:10.1186/s13287-021-02514-3

Tiepolo, T., Angelin, A., Palma, E., Sabatelli, P., Merlini, L., Nicolosi, L., et al. (2009). The Cyclophilin Inhibitor Debio 025 Normalizes Mitochondrial Function, Muscle Apoptosis and Ultrastructural Defects inCol6a1−/−myopathic Mice. Br. J. Pharmacol. 157, 1045–1052. doi:10.1111/j.1476- 5381.2009.00316.x

Tillet, E., Gential, B., Garrone, R., and Stallcup, W. B. (2002). NG2 Proteoglycan Mediates ?1 Integrin-independent Cell Adhesion and Spreading on Collagen VI. J. Cel. Biochem. 86, 726–736. doi:10.1002/jcb.10268

Uezumi, A., Ito, T., Morikawa, D., Shimizu, N., Yoneda, T., Segawa, M., et al. (2011). Fibrosis and Adipogenesis Originate from a Common Mesenchymal Progenitor in Skeletal Muscle. J. Cel Sci. 124, 3654–3664. doi:10.1242/jcs.086629

Urciuolo, A., Quarta, M., Morbidoni, V., Gattazzo, F., Molon, S., Grumati, P., et al. (2013). Collagen VI Regulates Satellite Cell Self-Renewal and Muscle Regeneration. Nat. Commun. 4, 1964. doi:10.1038/ncomms2964

Weintraub, H. (1993). The MyoD Family and Myogenesis: Redundancy, Networks, and Thresholds. Cell 75, 1241–1244. doi:10.1016/0092- 8674(93)90610-3

Xu, H., Wang, B., Ono, M., Kagita, A., Fujii, K., Sasakawa, N., et al. (2019). Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell stem cell 24, 566–578. e567. doi:10.1016/ j.stem.2019.02.005

Yonekawa, T., Komaki, H., Okada, M., Hayashi, Y. K., Nonaka, I., Sugai, K., et al. (2013). Rapidly Progressive Scoliosis and Respiratory Deterioration in Ullrich Congenital Muscular Dystrophy. J. Neurol. Neurosurg. Psychiatry 84, 982–988. doi:10.1136/jnnp-2012-304710

Yonekawa, T., and Nishino, I. (2015). Ullrich Congenital Muscular Dystrophy: Clinicopathological Features, Natural History and Pathomechanism(s). J. Neurol. Neurosurg. Psychiatry 86, 280–287. doi:10.1136/jnnp-2013-307052

Yoshimoto, Y., Ikemoto-Uezumi, M., Hitachi, K., Fukada, S.-i., and Uezumi, A. (2020). Methods for Accurate Assessment of Myofiber Maturity during Skeletal Muscle Regeneration. Front. Cel Dev. Biol. 8, 267. doi:10.3389/fcell.2020.00267

Zou, Y., Zhang, R.-Z., Sabatelli, P., Chu, M.-L., and Bönnemann, C. G. (2008). Muscle Interstitial Fibroblasts Are the Main Source of Collagen VI Synthesis in Skeletal Muscle: Implications for Congenital Muscular Dystrophy Types Ullrich and Bethlem. J. Neuropathol. Exp. Neurol. 67, 144–154. doi:10.1097/nen.0b013e3181634ef7

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る