リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Lactiplantibacillus plantarum 22A-3 isolated from pickle suppresses ovalbumin-induced food allergy in BALB/c mice and 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Lactiplantibacillus plantarum 22A-3 isolated from pickle suppresses ovalbumin-induced food allergy in BALB/c mice and 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice

Mizuno, Masashi Ohto, Nobuaki Kuwahara, Hiroshige 神戸大学

2021.09

概要

In the previous study, pickle-derived Lactiplantibacillus plantarum 22A-3 (LP22A3) suppressed ear edema in passive cutaneous anaphylaxis by its oral administration. Moreover, LP22A3 treatment directly to RBL-2H3 cells shows no effect on β-hexosaminidase release from RBL-2H3 but inhibited its release using the Caco-2/RBL-2H3 cells co-culture system stimulated with LP22A3 from the apical side. In this study, oral administration of LP22A3 decreased total IgE and ovalbumin (OVA) specific IgE contents in blood of BALB/c mice induced food allergy by OVA. Moreover, its oral administration suppressed the development of dermatitis induced by 2,4-dinitrochlorobenzene (DNCB) which was used to develop atopic dermatitis-like lesions in NC/Nga mice. This alleviation was further correlated with a reduction of elevated serum total IgE, transepidermal water loss and elevated acanthosis in the LP22A3-treated group compared with vehicle-treated positive group. In co-culture system composed of Caco-2 and RBL-2H3 cells, LP22A3 treatment on apical side before or after the sensitization with anti-dinitrophenyl (DNP) IgE antibody indicated the different effect on β−hexosaminidase release from RBL-2H3. Its treatment before the sensitization decreased β-hexosaminidase release, but not after sensitization, indicating that LP22A3 affected mast cells sensitized with allergen through intestinal epithelial cells. These results suggest that LP22A3 may have a potential therapeutic property for Type 1 hypersensitivity and atopic dermatitis.

この論文で使われている画像

参考文献

400

1. Masoli, M., Fabian, D., Holt, S., and Beasley, R.: The global burden of asthma:

401

executive summary of the GINA Dissemination Committee report. Allergy, 59, 469‒

402

478 (2004).

403

2. Asher, M. I., Montefort, S., Bjӧrkstén, B., Lai, C. K., Strachan, D. P., Wiland, S.

404

K., and Williams, H.: Worldwide time trends in the prevalence of symptoms of

405

asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One

406

and Three repeat multicountry cross-sectional surveys. Lancet, 368, 733‒743

407

(2006).

22

408

409

410

411

3. Galli, S. J., Tsai, M., and Piliponsky, A. M.: The development of allergic

inflammation. Nature, 454, 445‒454 (2008).

4. Stone, K. D., Prussin, C., and Metcalfe, D. D.: IgE, mast cells, basophils, and

eosinophils, J. Allergy Clin. Immunol., 125, S73‒S80 (2010).

412

5. Leung, D. Y. and Bieber, T.: Atopic dermatitis. Lancet, 361, 151-160 (2003).

413

6. Leung, D. Y.: Atopic dermatitis: new insights and opportunities for therapeutic

414

intervention. J. Allergy Clin. Immunol., 105, 860-876 (2000).

415

7. Jenmalm, M. C., Van Snick, J., Cormont, F., and Salman, B.: Allergen-induced

416

Th1 and Th2 cytokine secretion in relation to specific allergen sensitization and

417

atopic symptoms in children. Clin. Exp. Allergy, 31, 1528-1535 (2001).

418

419

420

8. Packard, K. A. and Khan, M. M.: Effects of histamine on Th1/Th2 cytokine

balance. Int. Immunopharmacol., 3, 909-920 (2003).

9. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E.,

421

Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., and other 40 authors:

422

Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA., 103,

423

15611-15616 (2006).

424

425

10. Stiles, M. E. and Holzapfel, W. H.: Lactic acid bacteria of foods and their current

taxonomy. Int. J. Food Microbiol., 36, 1-29 (1997).

23

426

427

11. Oelschlaeger T. A.: Mechanisms of probiotic actions - A review. International J.

Med. Microbiol., 300, 57–62 (2010).

428

12. Schiavi, E., Barletta, B., Butteroni, C., Corinti, S., Boirivant, M., and Di Felice,

429

G.: Oral therapeutic administration of a probiotic mixture suppresses established

430

Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy,

431

66, 499–508 (2011).

432

13. Ai, C., Ma, N., Zhang, Q., Wang, G., Liu, X., Tian, F., Chen, P., and Chen, W.:

433

Immunomodulatory effects of different lactic acid bacteria on allergic response and

434

its relationship with in vitro properties. PLoS ONE, 11. e0164697 (2016).

435

14. Segawa, S., Nakakita, Y., Takata, Y., Wakita, Y., Kaneko, T., Kaneda, H.,

436

Watari, J., and Yasui, H.: Effect of oral administration of heat-killed Lactobacillus

437

brevis SBC8803 on total and ovalbumin-specific immunoglobulin E production

438

through the improvement of Th1/Th2 balance. Int. J. Food Microbiol., 121, 1–10

439

(2008).

440

15. Peng, G. C. and Hsu, C. H.: The efficacy and safety of heat-killed Lactobacillus

441

paracasei for treatment of perennial allergic rhinitis induced by house-dust mite.

442

Pediatr. Allergy Immunol., 16, 433–438 (2005).

443

16. Fujiwara, D., Inoue, S., Wakabayashi, H., and Fujii, T.: The anti-allergic effects

24

444

of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2

445

cytokine expression and balance. Int. Arch. Allergy Immunol., 135, 205-215 (2004).

446

17. Ongol, M. P., Iguchi, T., Tanaka, M., Sone, T., Ikeda, H., Asano, K., and

447

Nishimura, T.: Potential of selected strains of lactic acid bacteria to induce a Th1

448

immune profile. Biosci. Biotechnol. Biochem., 72, 2847-2857 (2008).

449

18. Fujii, M., Fukuura, K., Ohto, N., Kuwahara, H. and Mizuno, M.: Lactobacillus

450

plantarum 22A-3 exerts anti-allergic activity through TGF-β secretion in passive

451

cutaneous anaphylaxis of mice, Int. J. Food Sci. Nutr.,

452

https://doi.org/10.1080/09637486.2020.1833316. (available online 19 Oct 2020)

453

19. Masuda, Y., Takahashi, T., Yoshida, K., Nishitani, Y., Mizuno, M. and

454

Mizoguchi, H.: Anti-allergic effect of lactic acid bacteria isolated from seed mash

455

used for brewing sake is not dependent on the total IgE levels. J. Biosci. Bioeng.,

456

114, 292-296 (2012).

457

20. Oka, S., Ohto, N., Kuwahara, H. and Mizuno, M.: Oral administration of

458

pineapple glucosylceramide improves defective epidermal barrier function by

459

restoring diminished level of TGF-β in the skin, Eur. Food Res. Technol., 246, 867-

460

874 (2020).

461

21. Janeway, C. A. Jr., Travers, P., Walport, M., and Shlomchik, M. J.:

25

462

Immunology. (5th ed.). New York: Garland Publishing (2001).

463

22. Sumiyoshi, K., Nakao, A., Ushio, H., Mitsuishi, K., Okumura, K., Tsuboi, R.,

464

Ra, C., Ogawa, H.: Transforming growth factor-β1 suppresses atopic dermatitis-

465

like skin lesions in NC/Nga mice. Clin. Exp. Allergy, 32:309–314 (2002).

466

23. Yamashita S, Yokoyama Y, Hashimoto T, Mizuno M.: A novel in vitro co-

467

culture model comprised of Caco-2/RBL-2H3 cells to evaluate anti-allergic effects

468

of food factors through the intestine. J. Immunol. Methods, 435, 1-6 (2016).

469

24. Gomez, G., Ramirez, C. D., Rivera, J., Patel, M., Norozian, F., Wright, H. V.,

470

Kashyap, M. V., Barnstein, B. O., Fischer-Stenger, K., Schwartz, L. B., Kepley,

471

C. L., Ryan, J. J.: TGF-β1 inhibits mast cell FcεRI expression. J. Immunol., 174,

472

5987–5993 (2005).

473

474

25. Kawai, T., Akira, S.: The role of pattern-recognition receptors in innate

immunology: update on Toll-like receptors. Nat. Immunol., 11, 373-384 (2010).

475

476

Figure legends

477

478

Fig. 1. Anti-allergic activity of LP22A3 in OVA-induced allergic mice.

479

LP22A3 (1 ×108 cfu/mouse/day) were orally administered to BALB/c mice for 17 days.

26

480

mice were sensitized with 10 μg OVA + 1 mg Al(OH)3 adjuvant dissolved in 300 μL

481

phosphate-buffered saline (PBS) by intraperitoneal injection. The sensitizations were

482

continued once every 5 days for 2 more times. Five days after the last intraperitoneal

483

sensitization, mice were challenged with OVA by intravenous injection with 3 μg OVA

484

dissolved in 100 μL PBS to trigger an allergy response. (A) Experimental design. Total

485

IgE (B), OVA specific IgE (C), and TGF-β (D) contents were measured by ELISA. Values

486

represent means ± SD (n = 6). Items with different letter were significantly different (p

487

< 0.05).

488

489

Fig. 2. Effect of exogenous TGF-β on PCA reaction.

490

Values represent means ± SD (n = 3). Items with different letter were significantly

491

different (p < 0.05).

492

493

Fig. 3. Effect of LP22A3 administration on DNCB-induced atopic mice

494

Mice were orally administered with LP22A3 (1 x 108 cfu/mouse/day) or prednisolone (3

495

mg/mouse/day) for 7 weeks. DNCB was applied to the dorsal skin to induce AD lesions.

496

DNCB (1%, 200 µl) in the mixture of acetone and ethanol (2:3, v/v) was applied. After

497

the first application, 0.5% DNCB (150 µl) in the mixture (acetone:Olive oil = 3:1) was

27

498

applied once every two days for 3 weeks. Mice were orally administrated with

499

LP22A3(1×108 cfu/day) dissolved in 100 μl 0.5% CMC solution. (A) Experimental

500

design. (B) Total IgE contents were measured by ELISA. (C) The TEWL values were

501

measured using a Tewameter TM300. (D) Changes in atopic dermatitis symptoms at the

502

dorsal skin lesion on week 0, 3 and 7. (E) Change in skin epidermal thickness elicited by

503

DNCB. Values represent means ± SD (n = 4). Items with different letter were

504

significantly different (p < 0.05).

505

506

Fig. 4. Effect of different timing of LP22A3 treatment on degranulation of RBL-2H3 cells

507

in co-culture system of Caco-2/RBL-2H3 cells.

508

LP22A3 (1 x 108 cfu/mL) was applied into apical side of Caco-2/RBL-2H3 cells after (A)

509

and before (B) the sensitization of anti DNP-IgE antibody. Values represent means ±

510

SD (n = 3). **P<0.01, *P<0.05 versus anti DNP-IgE/DNP-BSA group.

511

512

Fig. 5. Effect of exogenous TGF-β on β-hexosaminidase release from RBL-2H3 cells.

513

**P<0.01, *P<0.05 versus anti DNP-IgE/DNP-BSA group.

514

515

Fig. 6. Effect of exogenous TGF-β on IgE contents binding RBL-2H3 cells.

28

516

RBL-2H3 cells were sensitized with anti DNP-IgE (1 μg/mL) for 2 h, and then TGF-β

517

(50, 100 pg/ml) was added and incubated for another 6 h. The cells were collected and

518

the amount of IgE bound to RBL-2H3 cells was measured by Western blotting. Values

519

represent means ± SD (n = 3).

29

LP22A (1 x 108 cfu/mouse/day)

OVA/Al(OH)3 i.p.

-7

-1

Balb/c (♀)

5 weeks old

OVA i.v.

10

15 17

(Days)

14

Cardiac

puncture

Tail vain sampling

16

: Control

Total IgE (g/ml)

14

: LP22A

12

: OVA

10

10

15

20

OVA specific IgE (g/ml)

TGF- (pg/ml)

200

180

160

140

120

100

80

60

40

20

OVA

LP22A3 (1x108 cfu/ml)

Up

Mizuno et al., Fig. 1

Anti TNP-IgE

intravenously

PiCl

epicutaneously

TGF-

intravenously

Cardiac puncture

2h

Ear edema

30 min

Ear edema

Balb/c (♀)

5 weeks old

Ear edema (m)

100

80

60

40

20

TGF- (pg/ml)

150

100

50

Anti TNP-IgE (2 g/mouse)

PiCl (1.6%)

TGF-(40 ng/mouse)

Up

Mizuno et al., Fig. 2

TEWL measurement

Hair removal

on the back

of mice

Tail vain sampling

(Weeks)

-1

Applying 1% DNCB

in dorsal skin

Nc/Nga (♂)

4 weeks old

Applying 0.5% DNCB in dorsal

skin once every two days

Cardiac puncture

Tissue sampling

LP22A (1 x 108 cfu/mouse/day)

3000

2500

: DNCB

2000

: LP22A3 + DNCB

: Prednisolone + DNCB

1500

1000

500

**

TEWL (g•m-2 •h-1)

Total IgE (ng•ml-1)

: Control

70

60

50

40

30

**

20

10

**

Week

Control

0 week

3 week

7 week

DNCB

Prednisolone

DNCB

LP22A3

DNCB

**

Control

DNCB

500 m

500 m

Prednisolone

DNCB

LP22A3

DNCB

500 m

Thickness (m)

150

500 m

a,b

100

b,c

50

Up

Mizuno et al., Fig. 3

Anti DNP-IgE

DNP-BSA

LP22A3

Over night

6h

Caco-2

Caco-2

RBL-2H3 YY Y Y Y

RBL-2H3 YY Y Y Y

RBL-2H3

-Hexosaminidase

release (%)

120

100

80

60

40

20

**

Anti DNP-IgE

DNP-BSA

LP22A3 (1x108 cfu/ml)

Anti DNP-IgE

LP22A3

6h

DNP-BSA

4h

Caco-2

RBL-2H3 YY Y Y Y

RBL-2H3

RBL-2H3

-Hexosaminidase

release (%)

120

100

80

60

40

20

**

Anti DNP-IgE

DNP-BSA

LP22A3 (1x108 cfu/ml)

Up

Mizuno et al., Fig. 4

Anti DNP-IgE

2h

O/N

DNP-BSA

TGF-

-hexosaminidase

assay

6h

-Hexosaminidase release (%)

RBL-2H3

140

120

100

80

60

**

40

20

**

Anti DNP-IgE

DNP-BSA

TGF- (pg/ml)

50

100

200

Up

Mizuno et al., Fig. 5

Anti DNP-IgE

O/N

2h

TGF-

6h

Western blot

RBL-2H3

IgE

-actin

IgE/-actin

IgE

TGF- (pg/ml)

50

100

Up

Mizuno et al., Fig. 6

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る