リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oral administration of Lactiplantibacillus plantarum 22A-3 exerts anti-allergic activity against intestinal food allergy mouse models sensitized and challenged with ovalbumin」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oral administration of Lactiplantibacillus plantarum 22A-3 exerts anti-allergic activity against intestinal food allergy mouse models sensitized and challenged with ovalbumin

Enokida, Mari Minato, Ken-ichiro Yoshino, Susumu Ohto, Nobuaki Kuwahara, Hiroshige Mizuno, Masashi 神戸大学

2022.06

概要

In recent years, researches on food components with anti-allergic effects have been gathering attention, because of the expectation for the establishment of a safe and effective treatment for food allergy. Previous studies have reported that Lactiplantibacillus plantarum 22A-3 (LP22A3) inhibited degranulation of mast cells and reduced IgE production. We have developed a gastrointestinal allergy system in which mice are sensitized by intraperitoneal and oral administration of OVA and then challenged by oral administration of high doses of OVA. As a result, an increase in the amount of IgE in the blood and a decrease in the temperature of the colon were confirmed, and it was clarified that food allergy was induced by oral administration of high dose of OVA as the challenge. Oral administration of LP22A3 ameliorated allergic responses significantly by reducing the amount of IgE in the blood and to recovered the decrease of rectal temperature. However, LP22A3 did not affect the intestinal barrier function. Administered LP22A3 significantly suppressed mRNA expression of OX40L and IL-4. These results suggested that LP22A3 suppressed Th2 differentiation and IL-4 production via downregulation of OX40L, and consequently suppressed IgE production. LP22A3 might provide a safe and effective treatment for allergic diseases due to ability modulating intestinal immune system.

この論文で使われている画像

参考文献

Fig. 5. Change of mRNA expression related Th2 differentiation by LP22A3

treatment. A: The experimental design was almost the same as in Fig. 1, but the

OVA challenge was reduced to three times to make it milder. Values represent

the means ± SE (n = 5). The different letter means significant difference (p

< 0.05).

Ahmad, S., Azid, N. A., Boer, J. C., Lim, J., Chen, X., Plebanski, M., & Mohamud, R.

(2018). The key role of TNF-TNFR2 interactions in the modulation of allergic

inflammation: A review. Frontiers in Immunology, 9, 2572. https://doi.org/10.3389/

fimmu.2018.02572

Brandt, E. B., Strait, R. T., Hershko, D., Wang, Q., Muntel, E. E., Scribner, T. A.,

Zimmermann, N., Finkelman, F. D., & Rothenberg, M. E. (2003). Mast cells are

required for experimental oral allergen-induced diarrhea. The Journal of Clinical

Investigation, 112, 1666–1677. https://doi.org/10.1172/JCI19785

Chu, D. K., Wood, R. A., French, S., Fiocchi, A., Jordana, M., Waserman, S., Bro˙zek, J. L.,

& Schünemann, H. J. (2019). Oral immunotherapy for peanut allergy (PACE): A

systematic review and meta-analysis of efficacy and safety. The Lancet, 393,

2222–2232. https://doi.org/10.1016/S0140-6736(19)30420-9

Halim, T. Y. F., Rana, B. M. J., Walker, J. A., Kerscher, B., Knolle, M. D., Jolin, H. E.,

Serrao, E. M., Haim-Vilmovsky, L., Teichmann, S. A., Rodewald, H. R., Botto, M.,

Vyse, T. J., Fallon, P. G., Li, Z., Withers, D. R., & McKenzie, A. N. J. (2018). Tissue-

symptoms via intestinal barrier function.

Since Th2 cells are known to be a major cellular source of IL-4

release, Th2 cell responses are important for IgE production. As shown

in Fig. 4, mRNA expression of IL-4 was significantly decreased in the

ileum of mice treated with LP22A3 compared to mice treated with OVA

alone. However, T-bet and GATA-3, master regulators of Th1 and Th2

M. Enokida et al.

Food Bioscience 47 (2022) 101785

restricted adaptive type 2 immunity is orchestrated by expression of the

costimulatory molecule OX40L on group 2 innate lymphoid cells. Immunity, 48,

1195–1207. https://doi.org/10.1016/j.immuni.2018.05.003

Jalonen, T. (1991). Identical intestinal permeability changes in children with different

clinical manifestations of cow’s milk allergy. The Journal of Allergy and Clinical

Immunology, 88, 737–742. https://doi.org/10.1016/0091-6749(91)90180-V

Karimi, K., Inman, M. D., Bienenstock, J., & Forsythe, P. (2009). Lactobacillus reuteriinduced regulatory T cells protect against an allergic airway response in mice.

American Journal of Respiratory and Critical Care Medicine, 179, 186–193. https://doi.

org/10.1164/rccm.200806-951OC

Lamubol, J., Ohto, N., Kuwahara, H., & Mizuno, M. (2021). Lactiplantibacillus plantarum

22A-3-induced TGF-β1 secretion from intestinal epithelial cells stimulated CD103

DC and Foxp3+Treg differentiation and amelioration of colitis in mice. Food &

Function, 12, 8044–8055. https://doi.org/10.1039/D1FO00990G

Lei, W., Zeng, D., Liu, G., Zhu, Y., Wang, J., Wu, H., Jiang, J., & Huang, J. (2018). Crucial

role of OX40/OX40L signaling in a murine model of asthma. Molecular Medicine

Reports, 17, 4213–4220. https://doi.org/10.3892/mmr.2018.8453

Lei, W., Zeng, D. X., Zhu, C. H., Liu, G. Q., Zhang, X. Q., Wang, C. G., Wang, Q., &

Huang, J. A. (2014). The upregulated expression of OX40/OX40L and their

promotion of T cells proliferation in the murine model of asthma. Journal of Thoracic

Disease, 6, 979–987. https://doi.org/10.3978/j.issn.2072-1439.2014.06.34

Linton, P. J., Bautista, B., Biederman, E., Bradley, E. S., Harbertson, J., Kondrack, R. M.,

Padrick, R. C., & Bradley, L. M. (2003). Costimulation via OX40L expressed by B cells

is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine

secretion in vivo. Journal of Experimental Medicine, 197, 875–883. https://doi.org/

10.1084/jem.20021290

Liu, Y. W., Liao, T. W., Chen, Y. H., Chiang, Y. C., & Tsai, Y. C. (2014). Oral

administration of heat-inactivated Lactobacillus plantarum K37 modulated airway

hyperresponsiveness in ovalbumin-sensitized BALB/c Mice. PLoS One, 9, Article

e100105. https://doi.org/10.1371/journal.pone.0100105

Makabe-Kobayashi, Y., Hori, Y., Adachi, T., Ishigaki-Suzuki, S., Kikuchi, Y., Kagaya, Y.,

Shirato, K., Nagy, A., Ujike, A., Takai, T., Watanabe, T., & Ohtsu, H. (2002). The

control effect of histamine on body temperature and respiratory function in IgEdependent systemic anaphylaxis. The Journal of Allergy and Clinical Immunology, 110,

298–303. https://doi.org/10.1067/mai.2002.125977

Meli, A. P., Font´es, G., Soo, C. L., & King, I. L. (2017). Follicular helper cell–derived IL-4

is required for IgE production during intestinal helminth infection. The Journal of

Immunology, 199, 244–252. http://www.jimmunol.org/content/199/1/244.

Mizuno, M., Ohto, N., & Kuwahara, H. (2021). Lactiplantibacillus plantarum 22A-3

isolated from pickle suppresses ovalbumin-induced food allergy in BALB/c mice and

2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice. Journal of

Bioscience and Bioengineering, 132, 271–278. https://doi.org/10.1016/j.

jbiosc.2021.05.001

Mizuno, M., Sakaguchi, K., & Sakane, I. (2020). Oral administration of fucoidan can exert

anti-allergic activity after allergen sensitization by enhancement of galectin-9

secretion in blood. Biomolecules, 10, 258. https://doi.org/10.3390/biom10020258

Morawetz, R. A., Gabriele, L., Rizzo, L. V., Noben-Trauth, N., Kühn, R., Rajewsky, K.,

Müller, W., Doherty, T. M., Finkelman, F., Coffman, R. L., & Morse, H. C., III. (1996).

Interleukin (IL)-4-independent immunoglobulin class switch to immunoglobulin (Ig)

E in the mouse. Journal of Experimental Medicine, 184, 1651–1661. https://doi.org/

10.1084/jem.184.5.1651

Murosaki, S., Yamamoto, Y., Ito, K., Inokuchi, T., Kusaka, H., Ikeda, H., & Yoshikai, Y.

(1998). Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigenspecific IgE production by stimulation of IL-12 production in mice. The Journal of

Allergy and Clinical Immunology, 102, 57–64. https://doi.org/10.1016/S0091-6749

(98)70055-7

Ohshima, Y., Tanaka, Y., Tozawa, H., Takahashi, Y., Maliszewski, C., & Delespesse, G.

(1997). Expression and function of OX40 ligand on human dendritic cells. The

Journal of Immunology, 159, 3838–3848.

Ohshima, Y., Yang, L. P., Uchiyama, T., Tanaka, Y., Baum, P., Sergerie, M., Hermann, P.,

& Delespesse, G. (1991). OX40 costimulation enhances interleukin-4 (IL-4)

expression at priming and promotes the differentiation of naive human CD4+T cells

into high IL-4-producing effectors. Blood, 92, 3338–3345. https://doi.org/10.1182/

blood.V92.9.3338

Pizzuti, D., Senzolo, M., Buda, A., Chiarelli, S., Giacomelli, L., Mazzon, E., Curioni, A.,

Faggian, D., & De Lazzari, F. (2011). In vitro model for IgE mediated food allergy.

Scandinavian Journal of Gastroenterology, 46, 177–187. https://doi.org/10.3109/

00365521.2010.525716

Punnonen, J., Yssel, H., & de Vries, J. (1997). The relative contribution of IL-4 and IL-13

to human IgE synthesis induced by activated CD4+ or CD8+ T cells. The Journal of

Allergy and Clinical Immunology, 100, 792–801. https://doi.org/10.1016/S00916749(97)70276-8

Romantsik, O., Tosca, M. A., Zappettini, S., & Calevo, M. G. (2018). Oral and sublingual

immunotherapy for egg allergy. Cochrane Database of Systematic Reviews, 4, 1–46.

https://doi.org/10.1002/14651858.CD010638.pub3

Seshasayee, D., Lee, W. P., Zhou, M., Shu, J., Suto, E., Zhang, J., Diehl, L., Austin, C. D.,

Meng, Y. G., Tan, M., Bullens, S. L., Seeber, S., Fuentes, M. E., Labrijn, A. F.,

Graus, Y. M. F., Miller, L. A., Schelegle, E. S., Hyde, D. M., Wu, L. C.,

Hymowitz, S. G., & Martin, F. (2007). In vivo blockade of OX40 ligand inhibits

thymic stromal lymphopoietin driven atopic inflammation. Journal of Clinical

Investigation, 117, 3868–3878. https://doi.org/10.1172/JCI33559

Shida, K., Takahashi, R., Iwadate, E., Takamizawa, K., Yasui, H., Sato, T., Habu, S.,

Hachimura, S., & Kaminogawa, S. (2002). Lactobacillus casei strain Shirota

suppresses serum immunoglobulin E and immunoglobulin G1 responses and

systemic anaphylaxis in a food allergy model. Clinical and Experimental Allergy, 32,

563–570. https://doi.org/10.1046/j.0954-7894.2002.01354.x, 2002.

Sicherer, S. H., & Simons, F. E. R. (2017). Epinephrine for first-aid management of

anaphylaxis. Pediatrics, 139, Article e20164006. https://doi.org/10.1542/

peds.2016-4006

Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight

junctions. Animal Science Journal, 91, Article e13357. https://doi.org/10.1111/

asj.13357

Tsai, P.-Y., Zhang, B., He, W.-Q., Zha, J.-M., Odenwald, M. A., Singh, G., Tamura, A.,

Shen, L., Sailer, A., Yeruva, S., Kuo, W.-T., Fu, Y.-X., Tsukita, S., & Turner, J. R.

(2017). IL-22 Upregulates epithelial claudin-2 to drive diarrhea and enteric

pathogen clearance. Cell Host & Microbe, 21, 671–681. https://doi.org/10.1016/j.

chom.2017.05.009

Tulyeu, J., Kumagai, H., Jimbo, E., Watanabe, S., Yokoyama, K., Cui, L., Osaka, H.,

Mieno, M., & Yamagata, T. (2019). Probiotics prevents sensitization to oral antigen

and subsequent increases in intestinal tight junction permeability in juvenile–young

adult rats. Microorganisms, 7, 463. https://doi.org/10.3390/

microorganisms7100463

Wang, Y. H., & Liu, Y. J. (2007). OX40-OX40L interactions: A promising therapeutic

target for allergic diseases? Journal of Clinical Investigation, 117, 3655–3657. https://

doi.org/10.1172/JCI34182, 2007.

Xu, W., Tamura, T., & Takatsu, K. (2008). CpG ODN mediated prevention from

ovalbumin-induced anaphylaxis in mouse through B cell pathway. International

Immunopharmacology, 8, 351–361. https://doi.org/10.1016/j.intimp.2007.10.019

Yeom, M., Sur, B. J., Park, J., Cho, S. G., Lee, B., Kim, S. T., Kim, K. S., Lee, H., &

Hahm, D. H. (2015). Oral administration of Lactobacillus casei variety rhamnosus

partially alleviates TMA-induced atopic dermatitis in mice through improving

intestinal microbiota. Journal of Applied Microbiology, 119, 560–570. https://doi.org/

10.1111/jam.12844

Yu, L. C. H. (2012). Intestinal epithelial barrier dysfunction in food hypersensitivity.

Journal of Allergy, 1–11. https://doi.org/10.1155/2012/596081, 2012.

...

参考文献をもっと見る