リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hippo-TAZ signaling is the master regulator of the onset of triple-negative basal-like breast cancers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hippo-TAZ signaling is the master regulator of the onset of triple-negative basal-like breast cancers

Soyama, Hirotoshi Nishio, Miki Ootani, Junji Sakuma, Toshiko Takao, Shintaro Hara, Shigeo Masuda, Takaaki Mimori, Koshi Toyokuni, Shinya Lydon, John P. Nakao, Kazuwa Nishina, Hiroshi Fukumoto, Takumi Maehama, Tomohiko Suzuki, Akira 神戸大学

2022.07.11

概要

Breast cancer is the most frequent malignancy in women worldwide. Basal-like breast cancer (BLBC) is the most aggressive form of this disease, and patients have a poor prognosis. Here, we present data suggesting that the Hippo–transcriptional coactivator with PDZ-binding motif (TAZ) pathway is a key driver of BLBC onset and progression. Deletion of Mob1a/b in mouse mammary luminal epithelium induced rapid and highly reproducible mammary tumorigenesis that was dependent on TAZ but not yes-associated protein 1 (YAP1). In situ early-stage BLBC-like malignancies developed in mutant animals by 2 wk of age, and invasive BLBC appeared by 4 wk. In a human estrogen receptor+ luminal breast cancer cell line, TAZ hyperactivation skewed the features of these luminal cells to the basal phenotype, consistent with the aberrant TAZ activation frequently observed in human precancerous BLBC lesions. TP53 mutation is rare in human precancerous BLBC but frequent in invasive BLBC. Addition of Trp53 deficiency to our Mob1a/b-deficient mouse model enhanced tumor grade and accelerated cancer progression. Our work justifies targeting the Hippo-TAZ pathway as a therapy for human BLBC, and our mouse model represents a powerful tool for evaluating candidate agents.

この論文で使われている画像

参考文献

1. R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33(2021).

2. M. E. Hammond et al., American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

3. A. Marra, D. Trapani, G. Viale, C. Criscitiello, G. Curigliano, Practical classification of triple-negative breast cancer: Intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 6, 54 (2020).

4. G. Molyneux et al., BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7, 403–417 (2010).

5. P. Tharmapalan, M. Mahendralingam, H. K. Berman, R. Khokha, Mammary stem cells and progenitors: Targeting the roots of breast cancer for prevention. EMBO J. 38, e100852 (2019).

6. Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

7. E. Cerami et al., The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

8. J. Gao et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

9. M. R. Swiatnicki, E. R. Andrechek, How to choose a mouse model of breast cancer, a genomic perspective. J. Mammary Gland Biol. Neoplasia 24, 231–243 (2019).

10. X. Liu et al., Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl. Acad. Sci. U.S.A. 104, 12111–12116 (2007).

11. Z. Jiang et al., Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J. Clin. Invest. 120, 3296–3309 (2010).

12. J. D. Holland et al., Combined Wnt/β-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep. 5, 1214–1227 (2013).

13. M. Nishio et al., Hippo vs. Crab: Tissue-specific functions of the mammalian Hippo pathway. Genes Cells 22, 6–31 (2017).

14. K. Nakatani et al., Targeting the Hippo signalling pathway for cancer treatment. J. Biochem. 161, 237–244 (2017).

15. M. Bartucci et al., TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681–690 (2015).

16. Q. Y. Lei et al., TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28, 2426–2436 (2008).

17. Q. Chen et al., A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 28, 432–437 (2014).

18. K. E. Denson et al., The Hippo signaling transducer TAZ regulates mammary gland morphogenesis and carcinogen-induced mammary tumorigenesis. Sci. Rep. 8, 6449 (2018).

19. L. Cao, P. L. Sun, M. Yao, M. Jia, H. Gao, Expression of YES-associated protein (YAP) and its clinical significance in breast cancer tissues. Hum. Pathol. 68, 166–174 (2017).

20. Y. Jaramillo-Rodr´ıguez, R. M. Cerda-Flores, R. Ruiz-Ramos, F. C. L´opez-M´arquez, A. L. Calder´on-Garcidue~nas, YAP expression in normal and neoplastic breast tissue: An immunohistochemical study. Arch. Med. Res. 45, 223–228 (2014).

21. J. D´ıaz-Mart´ın et al., Nuclear TAZ expression associates with the triple-negative phenotype in breast cancer. Endocr. Relat. Cancer 22, 443–454 (2015).

22. Y. W. Li et al., Characterization of TAZ domains important for the induction of breast cancer stem cell properties and tumorigenesis. Cell Cycle 14, 146–156 (2015).

23. M. Nishio et al., Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J. Clin. Invest. 122, 4505–4518 (2012).

24. A. Ventura et al., Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

25. H. Omori et al., YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. Sci. Adv. 6, eaay3324 (2020).

26. Y. Miyachi et al., TAZ inhibits acinar cell differentiation but promotes immature ductal cell proliferation in adult mouse salivary glands. Genes Cells 26, 714–726 (2021).

27. S. M. Soyal et al., Cre-mediated recombination in cell lineages that express the progesterone receptor. Genesis 41, 58–66 (2005).

28. P. M. Ismail, J. Li, F. J. DeMayo, B. W. O’Malley, J. P. Lydon, A novel LacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development. Mol. Endocrinol. 16, 2475–2489 (2002).

29. A. J. Jorgenson et al., TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. Am. J. Physiol. Cell Physiol. 312, C277–C285 (2017).

30. T. Hashimoto et al., p53 null mutations undetected by immunohistochemical staining predict a poor outcome with early-stage non-small cell lung carcinomas. Cancer Res. 59, 5572–5577 (1999).

31. Z. Wang et al., Analysis of CK5/6 and EGFR and its effect on prognosis of triple negative breast cancer. Front. Oncol. 10, 575317 (2021).

32. Z. Shu et al., A functional interaction between Hippo-YAP signalling and SREBPs mediates hepatic steatosis in diabetic mice. J. Cell. Mol. Med. 23, 3616–3628 (2019).

33. X. Zhou et al., Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Invest. 125, 2123–2135 (2015).

34. Y. Zhao, W. Zhou, L. Xue, W. Zhang, Q. Zhan, Nicotine activates YAP1 through nAChRs mediated signaling in esophageal squamous cell cancer (ESCC). PLoS One 9, e90836 (2014).

35. R. Fan, N. G. Kim, B. M. Gumbiner, Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl. Acad. Sci. U.S.A. 110, 2569–2574 (2013).

36. L. Xiang et al., HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget 6, 11768–11778 (2015).

37. H. W. Park et al., Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).

38. S. Di Agostino et al., YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins. EMBO Rep. 17, 188–201 (2016).

39. Y. Aylon et al., A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev. 20, 2687–2700 (2006).

40. A. Britschgi et al., The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature 541, 541–545 (2017).

41. N. Yabuta, S. Mukai, N. Okada, Y. Aylon, H. Nojima, The tumor suppressor Lats2 is pivotal in Aurora A and Aurora B signaling during mitosis. Cell Cycle 10, 2724–2736 (2011).

42. K. Masuda et al., LATS1 and LATS2 phosphorylate CDC26 to modulate assembly of the tetratricopeptide repeat subcomplex of APC/C. PLoS One 10, e0118662 (2015).

43. N. Furth et al., Down-regulation of LATS kinases alters p53 to promote cell migration. Genes Dev. 29, 2325–2330 (2015).

44. Y. J. Cha et al., High nuclear expression of yes-associated protein 1 correlates with metastasis in patients with breast cancer. Front. Oncol. 11, 609743 (2021).

45. N. Ding et al., Yes-associated protein expression in paired primary and local recurrent breast cancer and its clinical significance. Curr. Probl. Cancer 43, 429–437 (2019).

46. M. Yuan et al., Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ. 15, 1752–1759 (2008).

47. J. Gudmundsson et al., Loss of heterozygosity at chromosome 11 in breast cancer: Association of prognostic factors with genetic alterations. Br. J. Cancer 72, 696–701 (1995).

48. S. A. S. Real et al., Aberrant promoter methylation of YAP gene and its subsequent downregulation in Indian breast cancer patients. BMC Cancer 18, 711 (2018).

49. A. Skibinski et al., The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep. 6, 1059–1072 (2014).

50. V. Gatti et al., p63 at the crossroads between stemness and metastasis in breast cancer. Int. J. Mol. Sci. 20, E2683 (2019).

51. O. Yalcin-Ozuysal et al., Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 17, 1600–1612 (2010).

52. P. Bertheau et al., p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 22 (suppl. 2), S27–S29 (2013).

53. T. Jard´e et al., Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat. Commun. 7, 13207 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る