リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Myogenetic oligodeoxynucleotide complexed with berberine promotes differentiation of chicken myoblasts」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Myogenetic oligodeoxynucleotide complexed with berberine promotes differentiation of chicken myoblasts

Nihashi, Yuma Shinji, Sayaka Umezawa, Koji Shimosato, Takeshi Ono, Tamao Kagami, Hiroshi Takaya, Tomohide 信州大学

2021.07.27

概要

Myoblasts are myogenic precursors that develop into myotubes during muscle formation. Improving efficiency of myoblast differentiation is important for advancing meat production by domestic animals. We recently identified novel oligodeoxynucleotides (ODNs) termed myogenetic ODNs (myoDNs) that promote the differentiation of mammalian myoblasts. An isoquinoline alkaloid, berberine, forms a complex with one of the myoDNs, iSN04, and enhances its activities. This study investigated the effects of myoDNs on chicken myoblasts to elucidate their species-specific actions. Seven myoDNs (iSN01-iSN07) were found to facilitate the differentiation of chicken myoblasts into myosin heavy chain (MHC)-positive myotubes. The iSN04-berberine complex exhibited a higher myogenetic activity than iSN04 alone, which was shown to enhance the differentiation of myoblasts into myotubes and the upregulated of myogenic gene expression (MyoD, myogenin, MHC, and myomaker). These data indicate that myoDNs promoting chicken myoblast differentiation may be used as potential feed additives in broiler diets.

この論文で使われている画像

参考文献

Allouh, M. Z., Yablonka-Reuveni, Z., & Rosser, B. W. (2008). Pax7 reveals a

greater frequency and concentration of satellite cells at the ends of

growing skeletal muscle fibers.

Journal of Histochemistry and

Cytochemistry, 56, 77-87. https://doi.org/ 10.1369/jhc.7A7301.2007

Arthur, J. A., & Albers, G. A. A. (2003). Industrial perspective on problems

and issues associated with poultry breeding. In Muir, W. M., & Aggrey, S.

E. (Eds.), Poultry Genetics, Breeding and Biotechnology (pp. 1-12).

Wallingford: Centre for Agriculture and Bioscience International.

https://doi.org/10.1079/9780851996608.0001

Bates, P. J., Laber, D. A., Miller, D. M., Thomas, S. D., & Trent, J. O. (2009).

Discovery and development of the G-rich oligonucleotide AS1411 as a

novel treatment for cancer. Experimental and Molecular Pathology, 86,

151-164. https://doi.org/10.1016/j.yexmp.2009.01.004

Bauer, S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S., Akira,

S., ... Lipford, G. B. (2001). Human TLR9 confers responsiveness to

bacterial DNA via species-specific CpG motif recognition. Proceedings of

the National Academy of Sciences of the United States of America , 98,

9237-9242. https://doi.org/10.1073/pnas.161293498

Bazzicalupi, C., Ferraroni, M., Bilia, A. R., Scheggi, F., & Gratteri, P. (2012).

The crystal structure of human telomeric DNA complexed with

berberine: an interesting case of stacked ligand to G-tetrad ratio higher

21

than

1:1.

Nucleic

Acids

Research,

41,

632-638.

https://doi.org/10.1093/nar/gks1001

Beski, S. S. M., Swick, R. A., & Iji, P. A. (2015). Specialized protein products

in broiler chicken nutrition: A review. Animal Nutrition, 1, 47-53.

https://doi.org/10.1016/j.aninu.2015.05.005

Boo, S. Y., Tan, S. W., Alitheen, N. B., Ho, C. L., Omar, A. R., & Yeap, S. K.

(2020). Identification of reference genes in chicken intraepithelial

lymphocyte natural killer cells infected with very-virulent infectious

bursal

disease

Scientific

virus.

Reports,

10,

8561.

hppts://doi.org/10.1038/s41598-020-65474-3

Cerone, M. A., Marchetti, A., Bossi, G., Blandino, G., Sacchi, A., & Soddu, S.

(2000). p53 is involved in the differentiation but not in the

differentiation-associated apoptosis of myoblasts. Cell Death and

Differentiation, 7, 506-508. https://doi.org/10.1038/sj.cdd.4400676

Daughtry, M. R., Berio, E., Shen, Z., Suess, E. J. R., Shah, N., Geiger, A. E., ...

Gerrard, D. E. (2017). Satellite cell-mediated breast muscle regeneration

decreases

with

broiler

size.

Poultry

Science,

96,

3457-3464.

https://doi.org/10.3382/ps/pex068

Dumont, N. A., Bentzinger, C. F., Sincennes, M. C., & Rudnicki, M. A. (2015).

Satellite cells and skeletal muscle regeneration. Comprehensive

Physiology, 5, 1027-1059. https://doi.org/10.1002/cphy.c140068

Ghosh, M., Sharma, N., Gera, M., Kim, N., Huynh, D., Zhang, J., ... Jeong, D.

K. (2018). Insights into phytase-containing transgenic Lemna minor (L.)

22

as

novel

feed

additive.

Transgenic

Research,

27,

211-224.

https://doi.org/10.1007/s11248-018-0068-z

Hosotani, M., Kawasaki, T., Hasegawa, Y., Wakasa, Y., Hoshino, M.,

Takahashi, N., ... Watanabe, T. (2020). Physiological and pathological

mitochondrial

clearance

is

related

to

pectoralis

major

muscle

pathogenesis in broilers with wooden breast syndrome. Frontiers in

Physiology, 11, 579. https://doi.org/10.3389/fphys.2020.00579

Imenshahidi, M., & Hosseinzadeh, H. (2019). Berberine and barberry

(Berberis vulgaris): A clinical review. Phytotherapy Research, 33,

504-523. https://doi.org/10.1002/ptr.6252

Jia, W., Yao, Z., Zhao, J., Guan, Q., & Gao, L. (2017). New perspectives of

physiological and pathological functions of nucleolin (NCL). Life Sciences,

186, 1-10. https://doi.org/10.1016/j.lfs.2017.07.025

Juliano, R. L. (2018). Intracellular trafficking and endosomal release of

oligonucleotides: What we know and what we don't. Nucleic Acid

Therapeutics, 28, 166-177. https://doi.org/ 10.1089/nat.2018.0727

Luo, W., Li, E., Nie, Q., & Zhang, X. (2015). Myomaker, regulated by MYOD,

MYOG and miR-140-3p, promotes chicken myoblast fusion. International

Journal

of

Molecular

Sciences,

16,

26286-26201.

https://doi.org/10.3390/ijms161125946

Matthew, C. A., & Moore, M. J. (1987). Numbers of myonuclei and satellite

cell nuclei in latissimus dorsi muscles of the chicken. Cell and Tissue

Research, 248, 235-238. https://doi.org/ 10.1007/bf01239987

23

Meloche, K. J., Dozier III, W. A., Brandebourg, T. D., & Starkey, J. D. (2018).

Skeletal muscle growth characteristics and myogenic stem cell activity in

broiler chickens affected by wooden breast. Poultry Science, 97,

4401-4414. https://doi.org/10.3382/ps/pey287

Meng, F. C., Wu, Z. F., Yin, Z. Q., Lin, L. G., Wang, R., & Zhang, Q. W. (2018).

Coptidis rhizoma and its main bioactive components: recent advances in

chemical investigation, quality evaluation and pharmacological activity.

Chinese Medicine, 13, 13. https://doi.org/10.1186/s13020-018-0171-3

Nakamura, S., Yonekura, S., Shimosato, T., & Takaya, T. (2021). Myogenetic

oligodeoxynucleotide (myoDN) recovers the differentiation of skeletal

muscle myoblasts deteriorated by diabetes mellitus. Frontiers in

Physiology, 12, 679152. https://doi.org/10.3389/fphys.2021.679152

Nihashi, Y., Ono, T., Kagami, H., & Takaya, T. (2019a). Toll-like receptor

ligand-dependent inflammatory responses in chick skeletal muscle

myoblasts. Developmental and Comparative Immunology, 91, 115-122.

https://doi.org/10.1016/j.dci.2018.10.013

Nihashi, Y., Umezawa, K., Shinji, S., Hamaguchi, Y., Kobayashi, H., Kono,

T., ... Takaya, T. (2019b). Distinct cell proliferation, myogenic

differentiation, and gene expression in skeletal muscle myoblasts of layer

and

broiler

chickens.

Scientific

Reports,

9,

16527.

https://doi.org/10.1038/s41598-019-52946-4

Park, W., Rengaraj, D., Kil, D. Y., Kim, H., Lee, H. K., & Song, K. D. (2017).

RNA-seq analysis of the kidneys of broiler chickens fed diets containing

24

different concentrations of calcium. Scientific Reports, 7, 11740.

https://doi.org/10.1038/s41598-017-11379-7

Pohar, J., Lainscek, D., Fukui, R., Yamamoto, C., Miyake, K., Jerala, R., &

Bencina, M. (2015). Species-specific minimal sequence motif for

oligodeoxyribonucleotides

activating

mouse

Journal

TLR9.

of

Immunology, 195, 4396-4405. https://doi.org/10.4049/jimmunol.1500600

Porrello, A., Cerone, M. A., Coen, S., Gurther, A., Fontemaggi, G., Cimino,

L., ... Soddu, S. (2000). p53 regulates myogenesis by triggering the

differentiation activity of pRb. Journal of Cell Biology, 151, 1295-1304.

https://doi.org/10.1083/jcb.151.6.1295

Ruijtenberg, S., & den Heuvel, S. (2016). Coordinating cell proliferation and

differentiation: Antagonism between cell cycle regulators and cell

type-specific

gene

expression.

Cell

Cycle,

15,

196-212.

https://doi.org/10.1080/15384101.2015.1120925

Sanjaya, A., Elder, J. R., & Shah, D. H. (2017). Identification of new CpG

oligodeoxynucleotide motifs that induce expression of interleukin-1β and

nitric oxide in avian macrophages. Veterinary Immunology and

Immunopathology, 192, 1-7. https://doi.org/10.1016/j.vetimm.2017.08.005

Scheuermann, G. N., Bilgili, S. F., Tuzun, S., & Mulvaney, D. R. (2004).

Comparison of chicken genotypes: myofiber number in pectoralis muscle

and

myostatin

ontogeny.

Poultry

Science,

83,

1404-1412.

https://doi.org/10.1093/ps/83.8.1404

Shinji, S., Nakamura, S., Nihashi, Y., Umezawa, K., & Takaya, T. (2020).

Berberine

and

palmatine

inhibit

the

growth

of

human

25

rhabdomyosarcoma cells. Bioscience, Biotechnology and Biochemistry,

84, 63-75. https://doi.org/10.1080/09168451.2019.1659714

Shinji, S., Umezawa, K., Nihashi, Y., Nakamura, S., Shimosato, T., & Takaya,

T. (2021). Identification of the myogenetic oligodeoxynucleotides

(myoDNs) that promote differentiation of skeletal muscle myoblasts by

targeting nucleolin. Frontiers in Cell and Developmental Biology, 8,

616706. https://doi.org/10.3389/fcell.2020.616706

Slawinska, A., Brzezinska, J., Siwek, M., & Elminowska-Wenda, G. (2013).

Expression of myogenic genes in chickens stimulated in ovo with light

and

temperature.

Reproductive

Biology,

13,

161-165.

https://doi.org/10.1016/j.repbio.2013.04.003

Soddu, S., Blandino, G., Scardigli, R., Coen, S., Marchetti, A., Rizzo, M. G., ...

Sacchi, A. (1996). Interference with p53 protein inhibits hematopoietic

and muscle differentiation. Journal of Cell Biology, 134, 193-204.

https://doi.org/10.1083/jcb.134.1.193

Takagi, M., Absalon, M. J., McLure, K. G., & Kastan, M. B. (2005).

Regulation of p53 translation and induction after DNA damage by

ribosomal

protein

L26

and

nucleolin.

Cell,

123,

49-63.

https://doi.org/10.1016/j.cell.2005.07.034

Takaya, T., Nihashi, Y., Kojima, S., Ono, T., & Kagami, H. (2017).

Autonomous xenogenic cell fusion of murine and chick skeletal muscle

myoblasts.

Animal

Science

https://doi.org/10.1111/asj.12884

Journal,

88,

1880-1885.

26

Takaya, T., Nihashi, Y., Ono, T., & Kagami, H. (2021). Transcription of

endogenous retrovirus group K members and their neighboring genes in

chicken skeletal muscle myoblasts. Journal of Poultry Science, 58, 79-87.

https://doi.org/10.2141/jpsa.0200021

Wang, Y., Yamamoto, Y., Shigemori, S., Watanabe, T., Oshiro, K., Wang, X.,

Wang, P., Sato, T., Yonekura, S., Tanaka, S., Kitazawa, H., & Shimosato,

T. (2005). Inhibitory/suppressive oligodeoxynucleotide nanocapsules as

simple oral delivery devices for preventing atopic dermatitis in mice.

Molecular Therapy, 23, 297-309. https://doi.org/ 10.1038/mt.2014.239

Yue, H., Lei, X. W., Yang, F. L., Li, M. Y., & Tang, C. (2010). Reference gene

selection for normalization of PCR analysis in chicken embryo fibroblast

infected

with

H5N1

AIV.

Virologica

https://doi.org/10.1007/s12250-010-3114-4

Sinica,

25,

425-431.

27

Figure legends

Figure 1. Nucleolin localization in chicken myoblasts during differentiation.

(A) Representative images of phase-contrast and MHC staining of the BPR

chicken myoblasts cultured in DM for 5 days. Scale bar, 100 μm. (B)

Representative images of nucleolin and MHC staining of the BPR chicken

myoblasts cultured in DM at days 0, 2, and 4. Scale bar, 50 μm.

Figure 2. Screening of PS-ODNs on the differentiation of chicken myoblasts.

(A and B) Immunofluorescent images of MHC and DAPI staining (A) and the

ratio of MHC+ cells (B). BPR chicken myoblasts were treated with 10 μM

PS-ODN in GM for 48 h. Scale bar, 200 μm. ** p < 0.01 vs control (Dunnett’s

test). n = 3.

Figure 3. Effects of iSN04 on the growth of chicken myoblasts. (A) The

numbers of the UKC myoblasts treated with 3 or 10 μM iSN04 in GM. * p <

0.05, ** p < 0.01 vs control at 48 h (Williams’ test). n = 3. (B and C)

Representative images of EdU and DAPI staining (B) and the ratio of EdU+

myoblasts (C). UKC chicken myoblasts were treated with 3 or 10 μM iSN04

in GM for 48 h. Scale bar, 200 μm. ** p < 0.05 vs control (Williams’ test). n =

4.

Figure 4. Effects of the iSN04-berberine complex on the differentiation of

chicken myoblasts. (A-C) Representative images of MHC and DAPI staining

28

(A), the ratio of MHC+ cells (B), and fusion index (C). UKC chicken myoblasts

were treated with 10 μM of berberine (Ber) and iSN04 in GM for 48 h. Scale

bar, 200 μm. * p < 0.05, ** p < 0.01 (Scheffe’s F test). n = 4. (D and E) qPCR

results of myogenic gene transcriptions in the UKC chicken myoblasts

treated with 10 μM of iSN04 and berberine in GM for 8 h (D) and 24 h (E).

The mean value of the control was set to 1.0 for each gene. * p < 0.05, ** p <

0.01 vs control (Dunnett’s test). n = 3-4.

29

Table 1. Primer sequences for qPCR.

Gene

Sequence (5’-3’)

Reference

MYOD1

GACAGCAGCTACTACACGGAATCA

Slawinska et al., 2013

GGAAATCCTCTCCACAATGCTT

MYOG

GGAGCACCCAGCTGGAGTT

CGATGCTCTCCACGATGGA

Slawinska et al., 2013

MYH1

CTCCTCACGCTTTGGTAA

TGATAGTCGTATGGGTTGGT

Lue et al., 2015

TMEM8C

TGGGTGTCCCTGATGGC

CCCGATGGGTCCTGAGTAG

Luo et al., 2015

YWHAZ

TCCACCACGACAGACCA

CCAGCCTTCCAACTTCC

Yue et al., 2010

MHC / DAPI

Day 5

Nucleolin

Phase-contrast

Merge

MHC / DAPI

Figure 1

Day 0

Day 2

Day 4

Figure 2

Control

iSN02

iSN04

iSN06

iSN08

iSN16

iSN24

iSN31

iSN40

iSN48

iSN01

iSN03

iSN05

iSN07

iSN15

iSN23

iSN30

iSN39

iSN47

iSN50

MHC / DAPI

40

50

**

**

**

**

**

**

Control

iSN01

iSN02

iSN03

iSN04

iSN05

iSN06

iSN07

iSN08

iSN15

iSN16

iSN23

iSN24

iSN30

iSN31

iSN39

iSN40

iSN47

iSN48

iSN50

MHC+ cells (%)

20

30

**

AAAAGATTAGGGTGAGGG

AAAGATTAGGGTGAGGGT

AAGATTAGGGTGAGGGTG

AGATTAGGGTGAGGGTGA

GATTAGGGTGAGGGTGAG

ATTAGGGTGAGGGTGAGT

TTAGGGTGAGGGTGAGTT

AGTTCAACATTAGGGTGA

CATTAGGGTGAAAATGAA

TAAAGCATTAGGGTGATG

TTAGGGTGATGAAATCCA

ATCAGGCTCAAGCTTGAG

CTCAAGCTTGAGTTCTGA

TCATTCCTAAGCTTGAGG

AAGCTTGAGGCCTATGGG

GGAACGATCCTCAAGCTT

CCTCAAGCTTAGGTCCGC

AAATAGCTTTAGGGTTAG

ATAGCTTTAGGGTTAGCC

10

Figure 3

30

50

40

20

**

Control

3 μM

10

10 μM

24

EdU+ cells (%)

No. of myoblasts (×104 cells)

30

**

20

**

10

48

Control

Treatment (h)

EdU / DAPI

Control

3 μM

10 μM

3 μM

10 μM

10

**

20

15

15

10

iSN04

+Ber

iSN04

+Ber

**

iSN04

iSN04 iSN04

+Ber

iSN04

10

Ber

Ber

20

Ber

Control

Control

30

Control

iSN04 iSN04

+Ber

TMEM8C / YWHAZ

TMEM8C / YWHAZ

10

iSN04

+Ber

40

iSN04

**

Ber

20

Control

30

Fusion index (%)

iSN04

iSN04

+Ber

MYH1 / YWHAZ

40

MYH1 / YWHAZ

**

iSN04

iSN04

+Ber

Ber

15

iSN04

Ber

Control

**

iSN04

+Ber

**

Ber

iSN04

**

Ber

Control

MHC / DAPI

Control

Control

MYOG / YWHAZ

MHC+ cells (%)

**

MYOG / YWHAZ

**

iSN04

+Ber

Ber

iSN04

+Ber

Control

iSN04

Ber

Control

MYOD1 / YWHAZ

50

iSN04

Ber

Control

MYOD1 / YWHAZ

Figure 4

iSN04+Ber

**

**

10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る