リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Investigation of electronic, optical, and magnetic properties of a quasi-one-dimensional molecular Mott insulator」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Investigation of electronic, optical, and magnetic properties of a quasi-one-dimensional molecular Mott insulator

Nuryadin Muhammad Khalish 東北大学

2022.09.26

概要

BEDT-TTF (bis(ethylenedithio)-tetrathiafulvalene) molecule-based organic salts have been considered as one of strongly correlated electron systems which indicate Mott insulating, charge ordering, quantum spin liquid, anisotropic superconducting states and so on [1]. In most cases of the organic molecular materials, previous studies have been carried out in BEDT-TTF salts with donor and anion molecule ratio of 2:1. These salts have one hole carrier averagely in two BEDT-TTF molecules resulting in the quarter filling conduction band in principle. In contrast, a series of κ-(BEDTTTF)2X (X = Cu[N(CN)2]Y with Y = Br and Cl, Cu2(CN)3 etc.) has the BEDT-TTF dimer structure. Strong dimerization of BEDT-TTF molecules changes the quarter filling band structure to an effective half filling band. This effective half filling band structure is the origin of the dimer Mott insulating state with strongly correlated -electrons.

Although active studies in the dimer-Mott organic salts, only few studies have been conducted in BEDTTTF salts with a 1:1 ratio, which should have a genuine Mott insulating state with a half-filling band. Previous reports in 1:1 ratio of BEDT-TTF salts such as ζ-(BEDT-TTF)PF6 and β-(BEDT-TTF)TaF6 show that both salts are considered as a genuine Mott insulator material [2]. Recently, another 1:1 BEDT-TTF organic salt, (BEDT-TTF)Ag4(CN)5, has been studied as a candidate of Dirac Semimetal (DSM) with diamond lattice structure [3]. It has a Mott-insulating ground state with antiferromagnetic order at TN = 102 K.

(BEDT-TTF)Cu[N(CN)2]2 is an organic salt with 1:1 ratio of donor BEDT-TTF+1 and anion molecules Cu[N(CN)2]2 -1 . (BEDT-TTF)Cu[N(CN)2]2 was first reported by Wang et. al. [4], where the crystal has monoclinic structure and C2/c space group. Wang et al. concluded this compound as a semiconductor. However, (BEDT-TTF)Cu[N(CN)2]2 could be considered as a genuine Mott insulator from the half-filling band structure. (BEDT-TTF)Cu[N(CN)2]2 does not have an alternating layer structure found typically in quasi-twodimensional (BEDT-TTF)2X. Instead, this compound has three-dimensional arrangement of BEDT-TTF and anion molecules. This three-dimensional arrangement of BEDT-TTF with the shortest intramolecular distance results in a distorted diamond-like lattice structure. The band structure calculation suggested that this compound has a low dimensional system resulting in the strongest transfer integral along the c-axis direction, creating one dimensional zigzag BEDT-TTF chain [5]. These characteristics make this compound a promising subject for studying quasi-one-dimensional organic material with half-filled energy band.

In this study, the fundamental physical properties like as electronic, optical, and magnetic properties of (BEDT-TTF)Cu[N(CN)2]2 are investigated. Specially a nonmagnetic state below about 26 K was found firstly in this study [7,8], and confirmed that the state was induced by spin-singlet transition, probably considered as a spin-Peierls transition. We also study molecular disorder effect by x-ray irradiation technique.

この論文で使われている画像

参考文献

[1] T. Sasaki, N. Yoneyama and N. Kobayashi, Mott transition and superconductivity in the strongly correlated organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2] Br, Phys. Rev. B 77, 05450 (2008).

[2] J. Hubbard, Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ) salts, Phys. Rev. B 17, 494 (1978).

[3] J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. London A 276, 238 (1963).

[4] D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, K. Bechgaard Superconductivity and K. H. Bechgaard C Oersted, in a synthetic organic conductor (TMTSF)2PF6, J. Physique Lett. 41 (1980).

[5] S. Ishibashi, First-principles electronic-band calculations on organic conductors, Science and technology of advanced materials 10 (2009).

[6] T. Mori, Organic conductors with unusual band fillings, Chemical reviews 104, 4947 (2004).

[7] T. Mori, H. Inokuchi, Y. Misaki, T. Yamabe, H. Mori and S. Tanaka, Crystal Structures of Highly Conducting Iodine Complexes of TTM-TTP, Bulletin of the Chemical Society of Japan 67, 661 (1994).

[8] M. Onuki, K. Hiraki, T. Takahashi, D. Jinno, T. Kawamoto, T. Mori, K. Tanaka and Y. Misaki, Electronic state of a new organic conductor (TTM-TTP)I3 with a one-dimensional half-filled band, Journal of Physics and Chemistry of Solids 62, 405 (2001).

[9] R. Świetlik, K. Yakushi, K. Yamamoto, T. Kawamoto and T. Mori, Infrared and Raman studies of the phase transition in the organic conductor (TTM-TTP)I3, Synthetic metals 150, 83 (2005).

[10] H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto and J. Tanaka, A New Ambient Pressure Organic Superconductor Based on BEDTTTF with TC Higher than 10 K (TC = 10.4 K), Chem. Lett. 17, 55 (1988).

[11] U. Geiser, J. Schultz, H. H. Wang, D. M. Watkins, D. L. Stuoka and J. M. Williams, Strain index, lattice softness and superconductivity of organic donor-molecule salts Crystal and electronic structures of three isostructural salts κ-(BEDT-TTF)2Cu[N(CN)2]X (X=Cl, Br, I), Physica C. 174, 475 (1991).

[12] H. Taniguchi, M. Miyashita, K. Uchiyama, K. Satoh, N. Môri, H. Okamoto, K. Miyagawa, K. Kanoda, M. Hedo and Y. Uwatoko, Superconductivity at 14.2 K in layered organics under extreme pressure, J. Phys. Soc. Jpn. 72, 468 (2003).

[13] C. Hotta, Classification of quasi-two dimensional organic conductors based on a new minimal model, J. Phys. Soc. Jpn. 72, 840 (2003).

[14] H. H. Wang, U. Geiser, J. M. Williams, K. D. Carlson, A. M. Kini, J. M. Mason, J. T. Perry, H. A. Charlier and A. V. S. Crouch, Phase selectivity in the simultaneous synthesis of the Tc = 12.8 K (0.3 kbar) organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl or the semiconductor (BEDTTTF)Cu[N(CN)2]2, American Chemical Society 4, 247 (1992). 68

[15] J. G. Analytis, A. Ardavan, S. J. Blundell, R. L. Owen, E. F. Garman, C. Jeynes and B. J. Powell, Effect of irradiation-induced disorder on the conductivity and critical temperature of the organic superconductor κ-(BEDT-TTF)2Cu(SCN)2, Phys. Rev. Lett. 96, (2006).

[16] G. Mihély and L. Zuppiroli, Radiation effects in organic metals: The mechanisms of damage production, Philos. Mag. A 45, 549 (1982).

[17] T. Sasaki, H. Oizumi, N. Yoneyama, N. Kobayashi and N. Toyota, X-ray irradiation-induced carrier doping effects in organic dimer-Mott insulators, J. Phys. Soc. Jpn. 76, (2007).

[18] T. Sasaki, N. Yoneyama, Y. Nakamura, N. Kobayashi, Y. Ikemoto, T. Moriwaki and H. Kimura, Optical probe of carrier doping by x-ray irradiation in the organic dimer Mott insulator κ-(BEDTTTF)2Cu[N(CN)2]Cl, Phys. Rev. Lett. 101, (2008).

[19] N. Yoneyama, T. Sasaki, N. Kobayashi, K. Furukawa and T. Nakamura, X-ray irradiation effect on magnetic properties of Dimer–Mott insulators: κ-(BEDT-TTF)2Cu[N(CN)2]Cl and β′-(BEDTTTF)2ICl2, Phys. B 405, S244 (2010).

[20] K. Sano, T. Sasaki, N. Yoneyama and N. Kobayashi, Electron localization near the Mott transition in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br, Phys Rev. Lett. 104, 217003 (2010).

[21] T. Sasaki, H. Oizumi, Y. Honda, N. Yoneyama and N. Kobayashi, Suppression of superconductivity by nonmagnetic disorder in organic superconductor κ-(BEDT-TTF)2Cu(NCS)2, J. Phys. Soc. Jpn. 80, 104703 (2011).

[22] T. Sasaki, K. Sano, H. Sugawara, N. Yoneyama and N. Kobayashi, Influence of randomness on the Mott transition in κ-(BEDT-TTF)2X, Phys. Status Solidi B 249, 947 (2012).

[23] L. Kang, K. Akagi, K. Hayashi and T. Sasaki, First-principles investigation of local structure deformation induced by x-ray irradiation in κ-(BEDT-TTF)2Cu[N(CN)2]Br, Phys. Rev. B 95, 214106 (2017).

[24] S. Sasaki, K. Hashimoto, R. Kobayashi, K. Itoh, S. Iguchi, Y. Nishio, Y. Ikemoto, T. Moriwaki, N. Yoneyama, M. Watanabe, A. Ueda, H. Mori, K. Kobayashi, R. Kumai, Y. Murakami, J. Müller and T. Sasaki, Crystallization and vitrification of electrons in a glass-forming charge liquid, Science 357, 1381 (2017).

[25] J. M. Williams, A. M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins and J. M. Kommers, From semiconductor-semiconductor transition (42 K) to the highest-Tc organic superconductor, κ-(ET)2Cu[N(CN)2]Cl (Tc = 12.5 K), Inorganic Chemistry 29, 3272 (1990).

[26] K. Miyagawa, K. Kanoda and A. Kawamoto, NMR Studies on Two-Dimensional Molecular Conductors and Superconductors:  Mott Transition in κ-(BEDT-TTF)2X, Chem. Rev. 104, 5635 (2004).

[27] K. Kanoda, Recent progress in NMR studies on organic conductors, Hyperfine Interact 104, 235 (1997).

[28] H. Kino and H. Fukuyama, Phase Diagram of Two-Dimensional Organic Conductors: (BEDTTTF)2X, J. Phys. Soc. Jpn. 65, 2158 (1996).

[29] H. Ito, T. Ishiguro, M. Kubota and G. Saito, Metal-Nonmetal Transition and Superconductivity Localization in the Two-Dimensional Conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl under Pressure, J. Phys. Soc. Jpn. 65, 2987 (1996).

[30] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière, M. Fourmigué and P. Batail, Mott Transition, Antiferromagnetism, and Unconventional Superconductivity in Layered Organic Superconductors, Phys. Rev. Lett. 85, 5420 (2000).

[31] N. Yoneyama, T. Sasaki and N. Kobayashi, Substitution Effect by Deuterated Donors on Superconductivity in κ-(BEDT-TTF)2Cu[N(CN)2]Br, J. Phys. Soc. Jpn. 73, 1434 (2004).

[32] P. B. Allen, R. M. Wentzcovitch, W. W. Schulz and P. C. Canfield, Resistivity of the hightemperature metallic phase of VO2, Phys. Rev. B 48, 4359 (1993).

[33] C. N. Berglund and H. J. Guggenheim, Electronic Properties of VO2 near the SemiconductorMetal Transition, Phys. Rev. 185, 1022 (1969).

[34] C. Michel, S. D. Baranovskii, P. J. Klar, P. Thomas and B. Goldlücke, Strong non-Arrhenius temperature dependence of the resistivity in the regime of traditional band transport, Applied physics letters 89, 112116 (2006).

[35] J. S. Blakemore, Semiconductor Statistics, Elsevier, 1962.

[36] N. F. Mott, Metal-Insulator Transitions, London: CRC Press, 2004.

[37] N. F. Mott and E. A. Davis, Electronic Process in Non-crystalline Materials, 2nd ed., Oxford: Oxford university press, 1979.

[38] D. Yu, C. Wang, B. L. Wehrenberg and P. Guyot-Sionnest, Variable range hopping conduction in semiconductor nanocrystal solids, Phys. Rev. Lett. 92, 216802 (2004).

[39] A. L. Efros and B. I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C 8, L49 (1975).

[40] M. Dressel and G. Grüner, Electrodynamics of Solids, Cambridge: Cambridge University Press, 2002.

[41] W. N. Shafarman and T. G. Castner, Critical behavior of Mott variable-range hopping in Si:As near the metal-insulator transition, Phys. Rev. B 33, 3570 (1986).

[42] P. W. Anderson, A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion, J. Phys. Soc. Jpn 9, 316 (1954).

[43] Z. H. Wang, E. M. Scherr, A. G. MacDiarmid and A. J. Epstein, Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional ‘‘metallic’’ states, Phys. Rev. B 45, 4190 (1992).

[44] J. C. Bonner, One-dimensional model systems: Theoretical survey, Journal of Applied Physics 49, 1299 (1978).

[45] J. C. Bonner and M. E. Fisher, Linear Magnetic Chains with Anisotropic Coupling, Phys. Rev. 135, A640 (1964).

[46] T. Yamamoto, M. Uruichi, K. Yamamoto, K. Yakushi, A. Kawamoto and H. Taniguchi, Examination of the Charge-Sensitive Vibrational Modes in Bis(ethylenedithio)tetrathiafulvalene, J. Phys. Chem. B 109, 15226 (2005).

[47] K. Hashimoto, R. Kobayashi, H. Okamura, H. Taniguchi, Y. Ikemoto, T. Moriwaki, S. Iguchi, M. Naka, S. Ishihara and T. Sasaki, Emergence of charge degrees of freedom under high pressure in the organic dimer-Mott insulator β′-(BEDT - TTF)2ICl2, Phys. Rev. B 92, 085149 (2015).

[48] A. Fortunelli and A. Painelli, Ab initio estimate of Hubbard model parameters: A simple procedure appliedto BEDT-TTF salts, Phys. Rev. B 55, 16088 (1997).

[49] O. Kahn, Molecular Magnetism, New York: Wiley-VCH, 1993.

[50] R. L. Carlin, Magnetochemistry, Berlin: Springer-Heidelberg, 1986.

[51] H. Kino and H. Fukuyama, Phase Diagram of Two-Dimensional Organic Conductors: (BEDTTTF)2X, J. Phys. Soc. Jpn 65, 2158 (1996).

[52] H. Fukuyama, Physics of molecular conductors, J. Phys. Soc. Jpn 75, 051001 (2006).

[53] K. Kanoda, Metal-insulator transition in κ-(ET)2X and (DCNQI)2M: Two contrasting manifestation of electron correlation, J. Phys. Soc. Jpn 75, 051007 (2006).

[54] B. J. Powell and R. H. McKenzie, Quantum frustration in organic Mott insulators: From spin liquids to unconventional superconductors, Reports on Progress in Physics 74, 056501 (2011)

[55] H. Wang, K. Carlson, U. Geiser, A. Kini, A. Schultz, J. Williams, L. Montgomery, W. Kwok, U. Welp, K. Vandervoort, S. Boryschuk, A. Crouch, J. Kommers, D. Watkins, J. Schriber, D. Overmyer, D. Jung, J. Novoa and M.-H. Whangbo, New κ-phase materials, κ-(ET)2Cu[N(CN)2]X. X=Cl, Br and I. The synthesis, structure and superconductivity above 11 K in the Cl (TC = 12.8 K, 0.3 kbar) and Br (TC = 11.6 K) salts, Synthetic metals 42, 1983 (1991)

[56] B. Miksch, A. Pustogow, M. J. Rahim, A. A. Bardin, K. Kanoda, J. A. Schlueter, R. Hübner, M. Scheffler and M. Dressel, Gapped magnetic ground state in quantum spin liquid candidate κ- (BEDT-TTF)2Cu2(CN)3, Science 372, 276 (2001).

[57] T. Furukawa, K. Miyagawa, T. Itou, M. Ito, H. Taniguchi, M. Saito, S. Iguchi, T. Sasaki and K. Kanoda, Quantum Spin Liquid Emerging from Antiferromagnetic Order by Introducing Disorder, Phys. Rev. Lett 115, 077001 (2015).

[58] H.-L. Liu, L.-K. Chou, K. A. Abboud, B. H. Ward, G. E. Fanucci, G. E. Granroth, E. Canadell, M. W. Meisel, D. R. Talham and D. B. Tanner, Structure and Physical Properties of a New 1:1 CationRadical Salt, ζ-(BEDT−TTF)PF6, Chemistry of materials 9, 1865 (1997).

[59] T. Kawamoto, K. Kurata, T. Mori and R. Kumai, A New Genuine Mott Insulator: β-(BEDTTTF)TaF6, J. Phys. Soc. Jpn 90, 103703 (2021).

[60] Y. Shimizu, A. Otsuka, M. Maesato, M. Tsuchiizu, A. Nakao, H. Yamochi, T. Hiramatsu, Y. Yoshida and G. Saito, Molecular diamond lattice antiferromagnet as a Dirac semimetal candidate, Phys. Rev. B 99, 174417 (2019).

[61] A. Otsuka, Y. Shimizu, G. Saito, M. Maesato, A. Kiswandhi, T. Hiramatsu, Y. Yoshida, H. Yamochi, M. Tsuchiizu, Y. Nakamura, H. Kishida and H. Ito, Canting Antiferromagnetic SpinOrder (TN = 102 K) in a Monomer Mott Insulator (ET)Ag4(CN)5 with a Diamond Spin-Lattice, Bulletin of the Chemical Society of Japan 93, 260 (2020).

[62] A. Kiswandhi, M. Maesato, S. Tomeno, Y. Yoshida, Y. Shimizu, P. Shahi, J. Gouchi, Y. Uwatoko, G. Saito and H. Kitagawa, High pressure investigation of an organic three-dimensional Dirac semimetal candidate having a diamond lattice, Phys. Rev. B 101, 245124 (2020).

[63] D. Bergman, J. Alicea, E. Gull, S. Trebst and L. Balents, Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets, Nature Physics 3, 487 (2007).

[64] Y. Zhang, Y. Ran and A. Vishwanath, Topological insulators in three dimensions from spontaneous symmetry breaking, Phys. Rev. B 79, 245331 (2009).

[65] A. Bondi, van der Waals Volumes and Radii, J. Phys. Chem. 68, 441 (1964).

[66] N. Yoneyama, M. K. Nuryadin, S. Iguchi and T. Sasaki, will be published.

[67] N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).

[68] G. A. Bain and J. F. Berry, Diamagnetic Corrections and Pascal's Constants, Journal of Chemical Education 85, 532 (2008).

[69] J. C. Bonner, H. W. J. Blöte, J. W. Bray and I. S. Jacobs, Susceptibility calculations for alternating antiferromagnetic chains, Journal of Applied Physics 50, 1810 (1979).

[70] J. C. Bonner, S. A. Friedberg, H. Kobayashi, D. L. Meier and H. W. J. Blöte, Alternating linearchain antiferromagnetic in copper nitrate Cu(NO3)2.2.5H2O, Phys. Rev. B 27, 248 (1993).

[71] W. E. Estes, D. P. Gavel, W. E. Hatfield and D. J. Hodgson, Magnetic and structural characterization of dibromo- and dichlorobis(thiazole)copper(II), Inorganic Chemistry 17, 1415 (1978).

[72] J. W. Hall, W. E. Marsh, R. R. Weller and W. E. Hatfield, Exchange Coupling in the Alternating-Chain Compounds catena-Di-μ-chloro-bis(4-methylpyridine)copper(II), catena-Diμ-bromo-bis(N-methylimidazole)copper(II), catena-Di-μ-chloro-bis(4- methylpyridine)copper(II), catena-[Hexanedione bis(thiosemicarbazonato)] copper(II), catena- [Octanedione bis(thiosemicarbazonato)] copper(II), Inorganic Chemistry 20, 1033 (1981).

[73] J. E. Geusic and L. C. Brown, Computation of the Principal Components of an Asymmetric g Tensor from Paramagnetic Resonance Data, Phys. Rev. 112, 64 (1958).

[74] T. Sugano, G. Saito and M. Kinoshita, Spin relaxation and diffusion in quasi-two-dimensional organic metals: The Bis(ethylenedithio)tetrathiafulvalene compounds P-(BEDT-TTF)2X (X =I3 and IBr2), Phys. Rev. B 35, 6554 (1987).

[75] T. Nakamura, T. Nobutoki, T. Takahashi, G. Saito, H. Mori and T. Mori, ESR Properties of κType Organic Superconductors Based on BEDT-TTF, J. Phys. Soc. Jpn 63, 4110 (1994).

[76] M. Dressel, M. Dumm, T. Knoblauch, B. Köhler, B. Salameh and S. Yasin, Charge Order Breaks Magnetic Symmetry in Molecular Quantum Spin Chains, Advances in Condensed Matter Physics 2012, 1 (2012).

[77] C. P. Poole and H. A. Farach, Line Shapes in Electron Spin Resonance, Bulletin of Magnetic Resonance 1, 162 (1979).

[78] L. N. Bulaevskii, Magnetic susceptibility of a chain of spins with antiferromagnetic interaction, Fiz. Tverd. Tela (Leningrad) vol 11, 1132 (1969) [Sov. Phys. Solid State 11, 921 (1969)].

[79] E. Pytte, Peierls instability in Heisenberg chains, Phys. Rev. B 10, 4637 (1974).

[80] J. W. Bray, H. R. Hart, L. V. Interrante, I. S. Jacobs, J. S. Kasper, G. D. Watkins, S. H. Wee and J. C. Bonner, Observation of a Spin-Peierls Transition in a Heisenberg Antiferromagnetic LinearChain System, Phys. Rev. Lett 35, 744 (1975).

[81] T. Nakamura, Possible Charge Ordering Patterns of the Paramagnetic Insulating States in (TMTTF)2X, J. Phys. Soc. Jpn 72, 213 (2003).

[82] M. Kozlov, K. Pokhodnia and A. Yurchenko, Electron molecular vibration coupling in vibrational spectra of BEDT-TTF based radical cation salts, Spectrochimica Acta Part A: Molecular Spectroscopy 45, 437 (1989).

[83] O. Drozdova, G. Saito, H. Yamochi, K. Ookubo, K. Yakushi, M. Uruichi and L. Ouahab, Composition and structure of the anion layer in the organic superconductor κ′-(ET)2Cu2(CN)3: Optical study, Inorganic Chemistry 40, 3265 (2001).

[84] M. Kozlov, K. Pokhodnia and A. Yurchenko, The assignment of fundamental vibrations of BEDTTTF and BEDT-TTF-d8, Spectrochimica Acta Part A: Molecular Spectroscopy 43, 323 (1987).

[85] D. I. Khomskii, Basic aspects of the quantum theory of solids: Order and elementary excitations. Cambridge, UK: Cambridge University Press, 2010.

[86] N. Toyota, M. Lang and J. Müller, Low-dimensional molecular metals, Berlin: Springer-Verlag, 2007.

[87] R. S. Peierls, Quantum Theory of Solids. Oxford: Oxford University Press, 2001

[88] J. S. Miller, Extended linear chain compounds: Volume 3. New York: Plenum Press, 1983.

[89] T. Ishiguro and K. Yamaji, Organic superconductors. Berlin: Springer Verlag, 1989.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る