リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Theoretical Investigation into a Possibility of Formation of Propylene Oxide Homochirality in Space」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Theoretical Investigation into a Possibility of Formation of Propylene Oxide Homochirality in Space

堀, 優太 Nakamura, Honami Sakawa, Takahide Watanabe, Natsuki Kayanuma, Megumi 庄司, 光男 梅村, 雅之 重田, 育照 筑波大学 DOI:36067332

2023.01.13

概要

The preferential synthesis or destruction of a single enantiomer by ultraviolet circularly polarized light (UV-CPL) has been proposed as a possible triggering mechanism for the extraterrestrial origin of homochirality. Herein, we investigate the photoabsorption property of propylene oxide (c-C3H6O) for UV-CPL in the Lyman-a region. Our calculations show that c-C3H6O was produced by CH3+ and CH3CH(OH)CH3 or C3H7 and O (triplet). The computed electronic circular dichroism spectra show that c-C3H6O and the intermediate (CH3CH(OH)CH2+) could absorb the UV-CPL originating from the Lyman-a emitter spectrum, suggesting that the photolysis of c-C3H6OorCH3CH(OH)CH2+ upon irradiation could induce chiral symmetry breakage. Key Words: Propylene oxide—Circularly polarized light—Homochirality— Lyman-a region—Density functional theory. Astrobiology 22, 1330–1336.

この論文で使われている画像

参考文献

Bailey J. Chirality and the origin of life. Acta Astronaut 2000; 46(10–12):627–631; doi: 10.1016/S0094-5765(00)00024-2.

Bailey J, Chrysostomou A, Hough JH, et al. Circular polari- zation in star-formation regions: Implications for biomolec- ular homochirality. Science 1998;281(5377):672–674; doi: 10.1126/science.281.5377.672.

Bennett CJ, Osamura Y, Lebar MD, et al. Laboratory studies on the formation of three C2H4O isomers—acetaldehyde (CH3CHO), ethylene oxide (c-C2H4O), and vinyl alcohol (CH2CHOH)—in interstellar and cometary ices. Astrophys J 2005;634(1):698–711; doi: 10.1086/452618.

Bonner WA. The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 1991;21:59–111; doi: 10.1007/BF01809580.

Breest A, Ochmann P, Pulm F, et al. Experimental circular dichroism and VUV spectra of substituted oxiranes and thiiranes. Mol Phys 1994;82(3):539–551; doi: 10.1080/ 00268979400100404.

Carnell M, Peyerimhoff SD, Breest A, et al. Experimental and quantum-theoretical investigation of the circular-dichroism spectrum of R-methyloxirane. Chem Phys Lett 1991;180(5): 477–481; doi: 10.1016/0009-2614(91)85153-N.

Cronin JR, Pizzarello S. Enantiomeric excesses in meteoritic amino acids. Science 1997;275(5302):951–955; doi: 10.1126/ science.275.5302.951.

Dickens JE, Irvine WM, Ohishi M, et al. Detection of inter- stellar ethylene oxide (c-C2H4O). Astrophys J 1997;489(2): 753–757; doi: 10.1086/304821.

Engel MH, Macko SA. Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 1997;389:265–268; doi: 10.1038/38460.

Fletcher SP, Jagt RB, Feringa BL. An astrophysically relevant mechanism for amino acid enantiomer enrichment. Chem Commun 2007;25:2578–2580; doi: 10.1039/b702882b.

Flores JJ, Bonner WA, Massey GA. Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J Am Chem Soc 1977;99(11):3622–3625; doi: 10.1021/ja00453a018.

Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian16, Rev. A.03. Gaussian, Inc., Wallingford CT; 2016.

Fukue T, Tamura M, Kandori R, et al. Extended high circu- lar polarization in the Orion massive star forming region: Implications for the origin of homochirality in the solar system. Orig Life Evol Biosph 2010;40:335–346; doi: 10.1007/s11084-010-9206-1.

Fukushima H, Yajima H, Umemura M. High circular polari- zation of near-infrared light induced by micron-sized dust grains. Mon Not R Astron Soc 2020;496(3):2762–2767; doi: 10.1093/mnras/staa1718.

Garcia AD, Meinert C, Sugahara H, et al. The astrophys- ical formation of asymmetric molecules and the emergence of a chiral bias. Life 2019;9(1):29; doi: 10.3390/life9010 029.

Glavin DP, Burton AS, Elsila JE, et al. The search for chiral asymmetry as a potential biosignature in our solar system. Chem Rev 2020;120(11):4660–4689; doi: 10.1021/acs.chem rev.9b00474.

Jang H, Kim NJ, Heo J. Benchmarking study on time-dependent density functional theory calculations of electronic circular dichroism for gas-phase molecules. Comp Theor Chem 2018; 1125:63–68; doi: 10.1016/j.comptc.2018.01.003.

Kahn K, Bruice TC. Focal-point conformational analysis of ethanol, propanol, and isopropanol. ChemPhysChem 2005; 6(3):487–495; doi: 10.1002/cphc.200400412.

Kawasaki T, Hatase K, Fujii Y, et al. The distribution of chiral asymmetry in meteorites: An investigation using asymmetric autocatalytic chiral sensors. Geochim Cosmochim Acta 2006; 70(21):5395–5402; doi: 10.1016/j.gca.2006.08.006.

Kayanuma M, Kidachi K, Shoji M, et al. A theoretical study of the formation of glycine via hydantoin intermediate in outer space environment. Chem Phys Lett 2017;687:178–183; doi: 10.1016/j.cplett.2017.09.016.

Kondepudi DK, Kaufman RJ, Singh N. Chiral symmetry breaking in sodium chlorate crystallizaton. Science 1990; 250(4983):975–976; doi: 10.1126/science.250.4983.975.

Kro¨ner D. Laser-driven electron dynamics for circular dichro- ism in mass spectrometry: From one-photon excitations to multiphoton ionization. Phys Chem Chem Phys 2015;17(29): 19643–19655; doi: 10.1039/c5cp02193f.

Kwon J, Tamura M, Lucas PW, et al. Near-infrared circular polarization images of Ngc 6334-V. Astrophys J 2013;765(1): L6; doi: 10.1088/2041-8205/765/1/L6.

Kwon J, Tamura M, Hough JH, et al. Near-infrared circular polarization survey in star-forming regions: Correlations and trends. Astrophys J 2014;795(1):L16; doi: 10.1088/2041- 8205/795/1/L16.

Kwon J, Tamura M, Hough JH, et al. Near-infrared circular and linear polarimetry of Monoceros R2. Astron J 2016;152(3): 67; doi: 10.3847/0004-6256/152/3/67.

Kwon J, Nakagawa T, Tamura M, et al. Near-infrared polar- imetry of the outflow source AFGL 6366S: Detection of cir- cular polarization. Astron J 2018;156(1):1; doi: 10.3847/ 1538-3881/aac389.

McGuire BA, Carroll PB, Loomis RA, et al. Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 2016;352(6292):1449–1452; doi: 10.1126/science.aae0328.

Meierhenrich UJ, Nahon L, Alcaraz C, et al. Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew Chem Int Ed Engl 2005;44(35):5630–5634; doi: 10.1002/anie.200501311.

Meierhenrich UJ, Filippi JJ, Meinert C, et al. Photolysis of rac- leucine with circularly polarized synchrotron radiation. Chem Biodivers 2010;7(6):1651–1659; doi: 10.1002/cbdv.200900311. A rotational study. J Phys Chem A 2011;115(1):47–51; doi: 10.1021/jp1107944.

Soai K, Shibata T, Morioka H, et al. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral mole- cule. Nature 1995;378:767–768; doi: 10.1038/378767a0.

Tia M, Cunha de Miranda B, Daly S, et al. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers. J Phys Chem A 2014;118(15):2765– 2779; doi: 10.1021/jp5016142.

Turner BE, Apponi AJ. Microwave detection of interstellar vinyl alcohol, CH2 = CHOH. Astrophys J 2001;561(2):L207–Meinert C, Hoffmann SV, Cassam-Chena¨ı P, et al.L210; doi: 10.1086/324762. Photonenergy-controlled symmetry breaking with circularly polarized light. Angew Chem Int Ed Engl 2014;53(1):210– 214; doi: 10.1002/anie.201307855.

Meinert C, Cassam-Chena¨ı P, Jones NC, et al. Anisotropy- guided enantiomeric enhancement in alanine using far-UV circularly polarized light. Orig Life Evol Biosph 2015;45: 149–161; doi: 10.1007/s11084-015-9413-x.

Miyahara T, Hasegawa JY, Nakatsuji H. Circular dichroism and absorption spectroscopy for three-membered ring compounds using symmetry-adapted cluster-configuration interaction (SAC-CI) method. Bull Chem Soc Jpn 2009;82(10):1215– 1226; doi: 10.1246/bcsj.82.1215.

Nuevo M, Meierhenrich UJ, d’Hendecourt L, et al. Enantiomeric separation of complex organic molecules produced from irra- diation of interstellar/circumstellar ice analogs. Adv Space Res 2007;39(3):400–404; doi: 10.1016/j.asr.2005.05.011.

Paulson DR, Murray AS, Bennett D, et al. Photochemistry of epoxides. 3. Direct irradiation of propylene oxide in the gas phase. J Org Chem 1977;42(7):1252–1254; doi: 10.1021/ jo00427a035.

Rizzo A, Vahtras O. Ab initio study of excited state electronic circular dichroism. Two prototype cases: Methyl oxirane and R-(+)-1,1¢-bi(2-naphthol). J Chem Phys 2011;134:244109; doi: 10.1063/1.3602219.

Sato A, Kitazawa Y, Ochi T, et al. First-principles study of the formation of glycine-producing radicals from common interstellar species. Mol Astrophys 2018;10:11–19; doi: 10.1016/j.molap.2018.01.002.

Shibuya T, Ouchi M, Nakajima K, et al. What is the physical origin of strong Lya emission? II. Gas kinematics and dis- tribution of Lya emitters. Astrophys J 2014;788(1):74; doi: 10.1088/0004-637X/788/1/74.

Shoji M, Watanabe N, Hori Y, et al. Comprehensive search of stable isomers of alanine and alanine precursors in prebiotic syntheses. Astrobiol 2022;22(9): Ahead of Print; doi: 10.1089/ast.2022.0011.

Snow MS, Howard BJ, Evangelisti L, et al. From transient to induced permanent chirality in 2-propanol upon dimerization:A rotational study. J Phys Chem A 2011;115(1):47–51; doi: 10.1021/jp1107944.

Soai K, Shibata T, Morioka H, et al. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral mole- cule. Nature 1995;378:767–768; doi: 10.1038/378767a0.

Tia M, Cunha de Miranda B, Daly S, et al. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers. J Phys Chem A 2014;118(15):2765– 2779; doi: 10.1021/jp5016142.

Turner BE, Apponi AJ. Microwave detection of interstellar vinyl alcohol, CH2 = CHOH. Astrophys J 2001;561(2):L207– L210; doi: 10.1086/324762.

Varsano D, Espinosa-Leal L, Andrade X, et al. Towards a gauge invariant method for molecular chiroptical properties in TDDFT. Phys Chem Chem Phys 2009;11:4481–4489; doi: 10.1039/B903200B.

参考文献をもっと見る