リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ノルボルネンカルボキシイミドを用いた共重合体ポリマーの電気光学応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ノルボルネンカルボキシイミドを用いた共重合体ポリマーの電気光学応用

アリサ, バンナロン ALISA, BANNARON 九州大学

2020.09.25

概要

近年、インターネットやクラウドサービスの多様化、さらにはデータセンタの大規模化などに伴って情報通信量の大幅な増加が続いている。このような急速な情報通信量の増加を支えている技術が高速・大容量の光ネットワークである。最先端の光通信技術の中で、光送信デバイスは最も重要な基盤デバイスの一つである。スマートフォンやタブレット型端末の普及、IoT技術、および多様なセンシング技術の展開によって、今後、通信技術はますます高機能化することが予測される。情報通信量は大幅に増加しており、超高速化と大容量化に加えて低消費電力の光送信デバイスの開発は、通信の高性能化でも鍵となる。光変調器の高性能化では、従来の無機材料より広帯域の信号伝送が可能な電気光学(EO)ポリマーを応用したデバイス化が世界的に活発に進められている。また、デバイスの小型化に対応する集積技術への対応でもポリマー応用技術は注目を集めている。本研究では、高性能なEOポリマーの合成に加えて、信頼性の高いポリマーデバイスの作製を実現するため熱安定性ポリマーの合成と光変調器の応用について研究を行った。

 第1章では、電気光学などの非線形光学現象と有機物質に見いだされる非線形光学効果について述べている。特に二次非線形光学効果の発現について有機分子に必要な要素を、具体的な分子を例示して説明している。また、ポリマー中に有機分子を分散した電気光学材料の応用とポリマー薄膜の調整に関する基本的な方法、および電気光学特性を評価する光学手法について述べている。さらに本章では本論文の目的についても述べている。

 第2章では、高いガラス転移温度を持つノルボルネンカルボイミド系ポリマーの詳細について、種々のモノマーの合成とポリマーの合成方法について述べている。モノマー合成では、ガラス転移温度の高温化につながるノルボルネン誘導体の合成と共重合法によるポリマーの合成について検討している。特にEO色素をポリマーへ導入するための方法としてサイドチェーン型EOポリマーの検討をしており、EO色素を含有したモノマーを使った直接重合法でEOポリマーの合成に成功した。

 第3章では、生成したポリマーのガラス転移温度を制御するため、種々のモノマーを使ったEOポリマーの合成について詳細を述べている。特に本論文で合成したサイドチェーン型EOポリマーの利点について、主鎖型ポリマーや架橋型ポリマーと比較し述べており、ノルボルネンカルボイミドモノマーの応用が適していることが実験結果から示されている。電気光学特性の最適化に関する検討では、ポリマー中への色素導入率の検討や適切な金属触媒の選定による分子量や分子量分布の評価結果が述べられている。本章で得られたサイドチェーン型EOポリマーは、使用するノルボルネンカルボイミドモノマーの骨格によってガラス転移温度を予測通りに調整することが可能であり、特に熱安定性のEOポリマーの合成では200℃以上のガラス転移温度の高温化に成功している。

 第4章では、合成したEOポリマーの電気光学特性の評価を行い、その詳細を述べている。電気光学特性の解析は、薄膜と光導波路を作製して行った。薄膜を用いた評価では、反射法による電気光学定数の解析を行い、EOポリマーの電場配向条件の最適化をした。一方、光導波路の電気光学特性の評価は、薄膜を用いて得られた作製条件を適応することで、半波長電圧が1.9Vの光変調の低電圧化に成功している。

 第5章では、各章で得られた結果をまとめ、本論文の総括とした。

この論文で使われている画像

参考文献

CHAPTER I

[1] C. Koos, Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing, Karlesruhe Series in Photonics & Communications.

[2] A. Dakshanamoorthy, "Fundamentals of nonlinear optical materials," PRAMANA — journal of physics, vol. 57, pp. 871-883, 2001.

[3] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of Optical Harmonics," Physical Review Letters, vol. 7, pp. 118-119, 1961.

[4] S. Suresh, A. Ramanand, D. Jayaraman, and P. Mani, "Review on Theoretical Aspect of Nonlinear Optics," Reviews on Advanced Materials Science , vol. 30, pp. 175-183, 2012.

[5] R. Palmer, Silicon Photonic Modulators for Low-power Applications, KIT Scientific Publishing.

[6] I. P. Kaminow and J. R. Carruthers, "Optical Waveguiding Layers in LiNbO3 and LiTaO3," Applied Physics Letter, vol. 22, pp. 326-328, 1973.

[7] R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Applied Physics A, vol. 37, pp. 191-203, 1985.

[8] Ed L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 6, pp. 69-82, 2000.

[9] S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical Intensity Modulation to 40 GHz Using a Waveguide Electrooptic Switch," Apply Physics Letter, vol. 50, no. 23, pp. 1631-1633, 1987.

[10] H. Nagata and J. Ichiwaka, "Progress and Problems in Reliability of Ti:LiNbO3 Optical Intensity Modulators," Optical Engineering, vol. 34, pp. 3284-3293, 1995.

[11] J. L. Oudar and D. S. Chemla, "Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment," The Journal of Chemical Physics, vol. 66, pp. 2664-2668, 1977.

[12] L. R. Dalton, P. A. Sullivan, and D. H. Bale, "Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects," Chemical Reviews, vol. 110, pp. 25-55, 2010.

[13] B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, A. K.-Y. Jen, "Electro-optic Polymer Cladding Ring Resonator Modulators," Optics Express, vol. 16, pp. 18326-18333, 2008.

[14] A. K.-Y. Jen, J. Luo, T.-D. Kim, B. Chen, S.-H. Jang, et al, "Exceptional Electro-optic Properties Through Molecular Design and Controlled Self-assembly," in Proceedings of SPIE, Sandiego, 2005.

[15] S. R. Marder, D. N. Beratan, L.-T. Cheng, "Approaches for Optimizing the First Electronic Hyperpolarizability of Conjugated Organic Molecules," Science, vol. 252, pp. 103-106, 1991.

[16] S. R. Marder, C. B. Gorman, B. G. Tiemann, and L.-T. Cheng, "Stronger Acceptors Can Diminish Nonlinear Optical Response in Simple Donor-Acceptor Polyenes," Journal of the American Chemical Society, vol. 115, pp. 3006-3007, 1993.

[17] T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, "Second-order Nonlinear Optical Materials: Recent Advances in Chromophore Design," Journal of Materials Chemistry, vol. 7, pp. 2175-2189, 1997.

[18] P. A. Sullivan and L. R. Dalton, "Theory-Inspired Development of Organic Electro-optic Materials," Accounts of Chemical Research, vol. 43, pp. 10-18, 2010.

[19] A. K. Majumdar and J. C. Ricklin, Free-Space Laser Communications: Principle and Advance, Springer, 2010.

[20] C. C. Teng and H. T. Man, "Simple reflection technique for measuring the electro-optic coefficient of poled polymers," Applied Physics Letters, vol. 56, pp. 1734-1736, 1990.

[21] Y. Shuto and M. Amano, "Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films," Journal of Applied Physics, vol. 77, pp. 4632-4638, 1995.

[22] S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, "Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients," Applied Physics Letters, vol. 105, p. 113302, 2014.

[23] D.-H. Park, C.-H. Lee, and W. N. Herman, "Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures," Optics Express, vol. 14, pp. 8866-8884, 2006.

[24] Y.-P. Wang, J.-P. Chen, X.-W. Li, J.-X. Hong, X.-H. Zhang, J.-H. Zhou, and A.-L. Ye, "Measuring electro-optic coefficients of poled polymers using fiber-optic Mach–Zehnder interferometer," Applied Physics Letters, vol. 85, pp. 5102-5103, 2004.

CHAPTER III

[1] N. S. Allen, Photochemistry and Photophysics of Polymer Materials, A John Wiley & Sons, Inc., Publication.

[2] H. Ma, A. K.-Y. Jen, and L. R. Dalton, "Polymer-Based Optical Waveguides: Materials, Processing, and Devices," Advanced Materials, vol. 14, no. 19, pp. 1339-1365, 2002.

[3] L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend and A. K.- Y. Jen, "From Molecules to Opto-Chips: Organic Electro-optic Materials," Journal of Materials Chemistry, vol. 9, pp. 1905-1920, 1999.

[4] R. R. Barto Jr., C. W. Frank, P. V. Bedworth, S. Ermer, and R. E. Taylor, "Near-Infrared Optical Absorption Behavior in High-â Nonlinear Optical Chromophore-Polymer Guest- Host Materials. 1. Continuum Dielectric Effects in Polycarbonate Hosts," The Journal of Physical Chemistry B, vol. 108, no. 25, pp. 8702-8715, 2004.

[5] Y.- J. Cheng, J. Luo, S. Hau, D. H. Bale, T.-D. Kim, Z. Shi, D. B. Lao, N. M. Tucker, Y. Tian, L. R. Dalton, P. J. Reid, and A. K.-Y. Jen, "Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-β Nonlinear Optical Chromophores," Chemistrys of Materials, vol. 19, no. 5, pp. 1154-1163, 2007.

[6] G. R. Meredith, J. G. VanDusen and D. J. Williams, "Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers," Macromolecules, vol. 15, no. 5, pp. 1385-1389, 1982.

[7] M. He, T. Leslie, S. Garner, M. DeRosa, and J. Cites, "Synthesis of New Electrooptic Chromophores and Their Structure-Property Relationship," The Journal of Physical Chemistry B, vol. 108, no. 25, pp. 8731-8736, 2004.

[8] S. M. Garner, J. S. Cites, M. He, and J. Wang, "Polysulfone as an Electro-optic Polymer Host Material," Applied Physics Letters, vol. 84, pp. 1049-1051, 2004.

[9] I. Teraoka, D. Jungbauer, B. Reck, D.-Y. Yoon, R. Twieg, C. G. Willson, "Stability of nonlinear optical characteristics and dielectric relaxations of poled amorphous polymers with mainchain chromophores," Journal of Applied Physics, vol. 69, pp. 2568-2576, 1991.

[10] L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen, K. J. Shea, "Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Applications in Photonics," Chemistry of Materials, vol. 7, pp. 1060-1081, 1995.

[11] M. Haller, J. Luo, H. Li, T.-D. Kim, Y. Liao, B. H. Robinson, L. R. Dalton, and A. K.- Y. Jen, "A Novel Lattice-Hardening Process To Achieve Highly Efficient and Thermally Stable Nonlinear Optical Polymers," Macromolecules, vol. 37, no. 3, pp. 688-690, 2004.

[12] O. K. A. Iobal, "Determination of Electro-optic Tensor Coefficeints of Organic Thin Film Using Fabry-Parot Interferometer Setup," KTH Information and Communication Technology, 2013.

[13] C.‐C. Chang, C.-P. Chen, C.-C. Chou, W.-J. Kuo, and R.-J. Jeng, "Polymers for Electro‐ Optical Modulation," Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 45, pp. 125-170, 2005.

[14] D. M. Burland, R. D. Miller, and C. A. Walsh, "Second-order nonlinearity in poled- polymer systems," Chemical Reviews, vol. 94, no. 1, pp. 31-75, 1994.

[15] M. H. Davey, V. Y. Lee, L.-M. Wu, C. R. Moylan, W. Volksen, A. Knoesen, R. D. Miller, and T. J. Marks, "Ultrahigh-Temperature Polymers for Second-Order Nonlinear Optics. Synthesis and Properties of Robust, Processable, Chromophore-Embedded Polyimides," Chemistry of Materials, vol. 12, no. 6, pp. 1679-1693, 2000.

[16] J.-Y. Do, S.-K. Park, J.-J. Ju, S. Park, and M.-H. Lee, "Improved Electro‐Optic Effect by Hyperbranched Chromophore Structures in Side‐Chain Polyimide," Macromolecular Chemistry and Physics, vol. 204, pp. 410-416, 2003.

[17] H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, "High Thermal Stability 40 GHz Electro-optic Polymer Modulator," Optic Express, vol. 25, pp. 28643-28649, 2017.

[18] H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, "Low Driving Voltage Mach-Zehnder Interference Modulator Constructed From an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation," Optics Express, vol. 25, pp. 768-775, 2017.

[19] J. Asrar, "Metathesis Polymerization of N-Phenylnorbornenedicarboximide," Macromolecules, vol. 25, pp. 5150-5156, 1992.

[20] J. Asrar and J. B. Hurlbut, "Synthesis, Rheology, and Physical Properties of a Metathesis Polymer," Journal of Applied Polymer Sciences, vol. 50, pp. 1727-1732, 1993.

[21] R. H. Grubbs, "Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture)**," Angewandte Chemie International Edition, vol. 45, pp. 3760-3765, 2006.

[22] M. S. Sanford, J. A. Love, and R. H. Grubbs, "Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts," Journal of the American Chemical Society, vol. 123, pp. 6543-6554, 2001.

[23] J. Vargas, A. A. Santiago, R. Gavino A. M. Cerda, and M. A. Tlenkopatchev, "Synthesis and ring-opening metathesis polymerization (ROMP) of new N-fluoro- phenylnorbornene dicarboximide by 2nd generation ruthenium alkylidene catalyst," eXPRESS Polymer Letters, vol. 1, pp. 274-282, 2007.

[24] D. J. Nelson, S. Manzini, C. A. Urbina-Blanco, and S. P. Nolan, "Key processes in ruthenium-catalysed olefin metathesis," Chemical Communications, vol. 50, pp. 10355- 10375, 2014.

[25] A. J. Teator and C. W. Bielawski, "Remote control grubbs catalysts that modulate ring‐ opening metathesis polymerizations," Journal of Polymer Science Part A, Polymer Chemistry, no. 55, pp. 2949-2960, 2017.

[26] T. P. Montgomery, A. M. Johns and R. H. Grubbs, "Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts," Catalysts, vol. 6, no. 87, 2016.

[27] I. Choinopoulos, "Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications," Polymers, vol. 11, no. 298, 2019.

[28] A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, "Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenyl vinylene thiophene chromophore," Polymer, vol. 119, pp. 13-27, 2017.

[29] X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, "Nonlinear Optical Side-Chain Polymers Post-Functionalized with High-b Chromophores Exhibiting Large Electro-Optic Property," Journal of Polymer Science: Part A: Polymer Chemistry, vol. 49, pp. 47-54, 2011.

CHAPTER IV

[1] C. C. Teng, "Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth," Applied Physics Letter, vol. 60, pp. 1538-1540, 1992.

[2] D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Applied Physics Letter, vol. 70, pp. 3335-3337, 1997.

[3] M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," SCIENCE, vol. 298, pp. 1401-1403, 2002.

[4] X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, "Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer," IEEE Photonics Journal, vol. 4, pp. 2214-2228, 2012.

[5] X.-L. Huang, C.-T. Li, P.-P. Dang, and C.-T. Zheng, "A Mach-Zehnder interferometer electro-optic switch with ultralow voltage-length product using poled-polymer/ silicon slot waveguide," Optoelectronics Letters, vol. 11, pp. 264-267, 2015.

[6] H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, "Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss," Applied Physics Letters, vol. 93, 2008.

[7] J. Luo, S. Huang, Y.-J. Cheng, T.-D. Kim, Z. Ssji, X.-H. Zhou, and A. K.-Y. Jen, "Phenyltetraene-Based Nonlinear Optical Chromophores with Enhanced Chemical Stability and Electrooptic Activity," Organic Letters, vol. 9, no. 22, pp. 4471-4474, 2007.

[8] Y. Enami, C. T. DeRose, C. Loychik, D. Mathine, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, "Low half-wave voltage and high electro-optic effect in hybrid polymer/sol-gel waveguide modulators," Applied Physics Letters, vol. 89, p. 143506, 2006.

[9] M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K.-Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon–polymer hybrid system," Nature Materials, vol. 5, pp. 703-709, 2006.

[10] J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Gunter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J.-M. Fedeli, H. Yu, and W. Bogaerts, "Silicon-Organic Hybrid Electro-Optical Devices," IEEE Journal of Selected Topic in Quantum Electronics, vol. 19, 2013.

[11] X. Zhang, C.-J. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K.-Y. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, "High Performance Optical Modulator Based on Electro- Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide," Journal of LIghtwave Technology, vol. 34, pp. 2941-2951, 2016.

[12] J. Liu, G. Xu, F. Liu, I. Kityx, X. Liu, and Z. Zhen, "Recent advances in polymer electro- optic modulators," Royal Society of Chemistry, vol. 5, pp. 15784-15794, 2015.

[13] T. W. Baehr-Jones and M. J. Hochberg, "Polymer Silicon Hybrid Systems: A Platform for Practical Nonlinear Optics," Journal of Physical Chemistry, vol. 112, pp. 8085-8090, 2008.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る