リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「パイエル板組織内共生菌アルカリゲネス由来LPS/lipid Aのアジュバント応用に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

パイエル板組織内共生菌アルカリゲネス由来LPS/lipid Aのアジュバント応用に関する研究

Wang, Yun-Ju 大阪大学 DOI:10.18910/88000

2022.03.24

概要

Alcaligenes spp., including A. faecalis, is a gram-negative facultative bacterium uniquely residing inside the Peyer’s patches. We previously showed that A. faecalis-derived lipopolysaccharides (Alcaligenes LPS) acts as a weak agonist of toll-like receptor 4 (TLR4) to activate dendritic cells (DCs) and shows adjuvant activity by enhancing IgG and Th17 responses to systemic vaccination. Here, I examined the efficacy of Alcaligenes LPS as a nasal vaccine adjuvant. Nasal immunization with ovalbumin (OVA) plus Alcaligenes LPS induced follicular T helper cells (Tfh cells) and germinal center (GC) formation in the nasopharynx-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs), and consequently enhanced OVA-specific IgA and IgG responses in the respiratory tract and serum. In addition, nasal immunization with OVA plus Alcaligenes LPS induced OVA-specific T cells producing IL-17 and/or IL- 10, whereas nasal immunization with OVA plus cholera toxin (CT) induced OVA-specific T cells producing IFN-γ and IL-17, which are recognized as pathogenic type of Th17 cells. In addition, CT, but not Alcaligenes LPS, promoted the production of TNF-α and IL-5 by T cells. Nasal immunization with OVA plus CT, but not Alcaligenes LPS, led to increased numbers of neutrophils and eosinophils in the nasal cavity. Together, these findings indicate the benign nature of Alcaligenes LPS is an effective nasal vaccine adjuvant that induces antigen-specific mucosal and systemic immune responses without activation of inflammatory cascade after nasal administration.

 Lipid A is responsible for biological effect of LPS and has been applied to adjuvant. Here, I also examined adjuvant activity and safety of chemically synthesized Alcaligenes lipid A. Mice subcutaneously immunized with OVA plus Alcaligenes lipid A showed increased levels of OVA-specific serum IgG antibody, comparing to immunization with OVA alone. In addition, Alcaligenes lipid A induced high levels of IL-17 production from splenic CD4+ T cells, suggesting that Alcaligenes lipid A promoted antigen-specific Th17 cell responses as well as Alcaligenes LPS did in nasal immunization. Moreover, Alcaligenes lipid A had little side effects, such as weight loss and fever, reducing number of lymphocytes and platelets. In vitro stimulation with Alcaligenes lipid A upregulated expression of MHCII, CD40, CD80 and CD86 and enhanced the production of cytokine, IL-6, which are involved in inducing antibody production and Th17 cell responses, from murine bone marrow-derived dendritic cells (BMDCs). Also, in human peripheral blood mononuclear cells (PBMCs), stimulation with Alcaligenes lipid A induced the production of cytokines, including IL-6 and IL-1β. These findings suggest that Alcaligenes lipid A is also a safe and applicable synthetic adjuvant for systemic vaccination.

この論文で使われている画像

参考文献

1. Ivanov II, Atarashi K, Manel N, et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell (2009) 139:485–498. doi: 10.1016/j.cell.2009.09.033

2. Atarashi K, Suda W, Luo C, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science (2017) 358:359–365. doi: 10.1126/science.aan4526

3. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science (2011) 331:337–341. doi: 10.1126/science.1198469

4. Obata T, Goto Y, Kunisawa J, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A (2010) 107:7419–7424. doi: 10.1073/pnas.1001061107

5. Kunisawa J, Kiyono H. Alcaligenes is Commensal Bacteria Habituating in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA Responses. Front Immunol (2012) 3: doi: 10.3389/fimmu.2012.00065

6. Fung TC, Bessman NJ, Hepworth MR, et al. Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism. Immunity (2016) 44:634–646. doi: 10.1016/j.immuni.2016.02.019

7. Shibata N, Kunisawa J, Hosomi K, et al. Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity. Mucosal Immunol (2018) 11:693– 702. doi: 10.1038/mi.2017.103

8. Azegami T, Yuki Y, Kiyono H. Challenges in mucosal vaccines for the control of infectious diseases. Int Immunol (2014) 26:517–528. doi: 10.1093/intimm/dxu063

9. Lobaina Mato Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm (2019) 572:118813. doi: 10.1016/j.ijpharm.2019.118813

10. Lee B, Kader MA, Colgate ER, et al. Oral rotavirus vaccine shedding as a marker of mucosal immunity. Sci Rep (2021) 11:21760. doi: 10.1038/s41598- 021-01288-1

11. Lanthier PA, Huston GE, Moquin A, et al. Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses. Vaccine (2011) 29:7849–7856. doi: 10.1016/j.vaccine.2011.07.093

12. Asanuma H, Thompson AH, Iwasaki T, et al. Isolation and characterization of mouse nasal-associated lymphoid tissue. J Immunol Methods (1997) 202:123–131. doi: 10.1016/s0022-1759(96)00243-8

13. Kuper CF, Koornstra PJ, Hameleers DM, et al. The role of nasopharyngeal lymphoid tissue. Immunol Today (1992) 13:219–224. doi: 10.1016/0167- 5699(92)90158-4

14. Kiyono H, Fukuyama S. NALT- versus PEYER’S-patch-mediated mucosal immunity. Nat Rev Immunol (2004) 4:699–710. doi: 10.1038/nri1439

15. Boyaka PN. Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems. J Immunol (2017) 199:9–16. doi: 10.4049/jimmunol.1601775

16. Fazilleau N, Mark L, McHeyzer-Williams LJ, et al. Follicular helper T cells: lineage and location. Immunity (2009) 30:324–335. doi: 10.1016/j.immuni.2009.03.003

17. Lamichhane A, Azegami T, Kiyono H. The mucosal immune system for vaccine development. Vaccine (2014) 32:6711–6723. doi: 10.1016/j.vaccine.2014.08.089

18. Song L, Xiong D, Song H, et al. Mucosal and Systemic Immune Responses to Influenza H7N9 Antigen HA1-2 Co-Delivered Intranasally with Flagellin or Polyethyleneimine in Mice and Chickens. Front Immunol (2017) 8:326. doi: 10.3389/fimmu.2017.00326

19. Orr B, Douce G, Baillie S, et al. Adjuvant effects of adenylate cyclase toxin of Bordetella pertussis after intranasal immunisation of mice. Vaccine (2007) 25:64–71. doi: 10.1016/j.vaccine.2006.07.019

20. Steimle A, Autenrieth IB, Frick J-S. Structure and function: Lipid A modifications in commensals and pathogens. Int J Med Microbiol IJMM (2016) 306:290–301. doi: 10.1016/j.ijmm.2016.03.001

21. Fujimoto Y, Shimoyama A, Saeki A, et al. Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses. Mol Biosyst (2013) 9:987. doi: 10.1039/c3mb25477a

22. Shimoyama A, Di Lorenzo F, Yamaura H, et al. Lipopolysaccharide from Gut‐Associated Lymphoid‐Tissue‐Resident Alcaligenes faecalis : Complete Structure Determination and Chemical Synthesis of Its Lipid A. Angew Chem Int Ed (2021)10023–10031. doi: 10.1002/anie.202012374

23. Yoshii K, Hosomi K, Shimoyama A, et al. Chemically Synthesized Alcaligenes Lipid A Shows a Potent and Safe Nasal Vaccine Adjuvant Activity for the Induction of Streptococcus pneumoniae-Specific IgA and Th17 Mediated Protective Immunity. Microorganisms (2020) 8:1102. doi: 10.3390/microorganisms8081102

24. Suzuki H, Nagatake T, Nasu A, et al. Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin- 4-targeting nasal vaccine in mice. Sci Rep (2018) 8:2904. doi: 10.1038/s41598- 018-21120-7

25. Nagatake T, Hirata S-I, Koga T, et al. BLT1 mediates commensal bacteria- dependent innate immune signals to enhance antigen-specific intestinal IgA responses. Mucosal Immunol (2019) 12:1082–1091. doi: 10.1038/s41385-019- 0175-z

26. Nagatake T, Suzuki H, Hirata S, et al. Immunological association of inducible bronchus-associated lymphoid tissue organogenesis in Ag85B- rHPIV2 vaccine-induced anti-tuberculosis mucosal immune responses in mice. Int Immunol (2018) 30:471–481. doi: 10.1093/intimm/dxy046

27. Wei Z, Spizzo I, Diep H, et al. Differential Phenotypes of Tissue-Infiltrating T Cells during Angiotensin II-Induced Hypertension in Mice. PLoS ONE (2014) 9:e114895. doi: 10.1371/journal.pone.0114895

28. Okada K, Sato S, Sato A, et al. Identification and Analysis of Natural Killer Cells in Murine Nasal Passages. PLOS ONE (2015) 10:e0142920. doi: 10.1371/journal.pone.0142920

29. Luckheeram RV, Zhou R, Verma AD, et al. CD4+T cells: differentiation and functions. Clin Dev Immunol (2012) 2012:925135. doi: 10.1155/2012/925135

30. Griffin GK, Newton G, Tarrio ML, et al. IL-17 and TNF-α Sustain Neutrophil Recruitment during Inflammation through Synergistic Effects on Endothelial Activation. J Immunol (2012) 188:6287–6299. doi: 10.4049/jimmunol.1200385

31. Zeng G, Zhang G, Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol (2018) 15:206–215. doi: 10.1038/cmi.2017.113

32. Klion AD, Ackerman SJ, Bochner BS. Contributions of Eosinophils to Human Health and Disease. Annu Rev Pathol Mech Dis (2020) 15:179–209. doi: 10.1146/annurev-pathmechdis-012419-032756

33. Bedke T, Muscate F, Soukou S, et al. IL-10-producing T cells and their dual functions. Semin Immunol (2019) 44:101335. doi: 10.1016/j.smim.2019.101335

34. Gao H, Ying S, Dai Y. Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res (2017) 2017:1–12. doi: 10.1155/2017/3743048

35. Crotty S. Follicular Helper CD4 T Cells (T FH ). Annu Rev Immunol (2011) 29:621–663. doi: 10.1146/annurev-immunol-031210-101400

36. Crotty S. T Follicular Helper Cell Differentiation, Function, and Roles in Disease. Immunity (2014) 41:529–542. doi: 10.1016/j.immuni.2014.10.004

37. Ramsay AJ, Husband AJ, Ramshaw IA, et al. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science (1994) 264:561–563. doi: 10.1126/science.8160012

38. Beagley KW, Eldridge JH, Lee F, et al. Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA- committed B cells. J Exp Med (1989) 169:2133–2148. doi: 10.1084/jem.169.6.2133

39. Mitsdoerffer M, Lee Y, Jäger A, et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci U S A (2010) 107:14292– 14297. doi: 10.1073/pnas.1009234107

40. Scott-Taylor TH, Axinia S-C, Amin S, et al. Immunoglobulin G; structure and functional implications of different subclass modifications in initiation and resolution of allergy. Immun Inflamm Dis (2018) 6:13–33. doi: 10.1002/iid3.192

41. Harbour SN, Maynard CL, Zindl CL, et al. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci (2015) 112:7061–7066. doi: 10.1073/pnas.1415675112

42. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol (2019) 41:283–297. doi: 10.1007/s00281-019-00733-8

43. Silva-Vilches C, Pletinckx K, Lohnert M, et al. Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion. PLOS ONE (2017) 12:e0178114. doi: 10.1371/journal.pone.0178114

44. Lee Y, Awasthi A, Yosef N, et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol (2012) 13:991–999. doi: 10.1038/ni.2416

45. Stockinger B, Omenetti S. The dichotomous nature of T helper 17 cells. Nat Rev Immunol (2017) 17:535–544. doi: 10.1038/nri.2017.50

46. Uchiyama R, Yonehara S, Taniguchi S, et al. Inflammasome and Fas- Mediated IL-1β Contributes to Th17/Th1 Cell Induction in Pathogenic Bacterial Infection In Vivo. J Immunol (2017) 199:1122–1130. doi: 10.4049/jimmunol.1601373

47. Zhao Y, Hanniffy S, Arce-Gorvel V, et al. Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo. Virulence (2018) 9:465–479. doi: 10.1080/21505594.2017.1386831

48. Audiger C, Rahman MJ, Yun TJ, et al. The Importance of Dendritic Cells in Maintaining Immune Tolerance. J Immunol Baltim Md 1950 (2017) 198:2223–2231. doi: 10.4049/jimmunol.1601629

49. Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells. Annu Rev Immunol (2009) 27:485–517. doi: 10.1146/annurev.immunol.021908.132710

50. Patel DD, Kuchroo VK. Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity (2015) 43:1040–1051. doi: 10.1016/j.immuni.2015.12.003

51. Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol (2018) 15:458– 469. doi: 10.1038/s41423-018-0004-4

52. Revu S, Wu J, Henkel M, et al. IL-23 and IL-1β Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation. Cell Rep (2018) 22:2642–2653. doi: 10.1016/j.celrep.2018.02.044

53. Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol (2009) 21:265–272. doi: 10.1016/j.smim.2009.05.010

54. Hosomi K, Shibata N, Shimoyama A, et al. Lymphoid Tissue–Resident Alcaligenes Establish an Intracellular Symbiotic Environment by Creating a Unique Energy Shift in Dendritic Cells. Front Microbiol (2020) 11:561005. doi: 10.3389/fmicb.2020.561005

55. Soroush F, Tang Y, Mustafa O, et al. Neutrophil‐endothelial interactions of murine cells is not a good predictor of their interactions in human cells. FASEB J (2020) 34:2691–2702. doi: 10.1096/fj.201900048R

56. Peñaloza HF, Nieto PA, Muñoz-Durango N, et al. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology (2015) 146:100– 112. doi: 10.1111/imm.12486

57. Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung inflammation. J Inflamm (2010) 7:57. doi: 10.1186/1476-9255- 7-57

58. Arora S, Ahmad S, Irshad R, et al. TLRs in pulmonary diseases. Life Sci (2019) 233:116671. doi: 10.1016/j.lfs.2019.116671

59. Fukase K, Kirikae T, Kirikae F, et al. Synthesis of [3H]-Labeled Bioactive Lipid A Analogs and Their Use for Detection of Lipid A-Binding Proteins on Murine Macrophages. Bull Chem Soc Jpn (2001) 74:2189–2197. doi: 10.1246/bcsj.74.2189

60. Nurminen marjatta, Ãlander R-M. The role of the O antigen in adjuvant activity of lipopolysaccharide. FEMS Microbiol Lett (1991) 83:51–54. doi: 10.1111/j.1574-6968.1991.tb04387.x

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る