リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cilia motility of respiratory epithelium is a critical determinant in the efficacy of cholera toxin-based nasal vaccine adjuvant」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cilia motility of respiratory epithelium is a critical determinant in the efficacy of cholera toxin-based nasal vaccine adjuvant

藍, 黄文顕 大阪大学 DOI:10.18910/88001

2022.03.24

概要

Mucus layer secretion and respiratory cilia movement constitute physical barrier in the respiratory tract. In addition, the respiratory tract also has a mucosal immune system that provides additional line of defense, and, by using nasal immune system, intranasal vaccines have recently been commercialized. However, the impact of nasal physical barriers on nasal vaccine efficacy remains to be investigated. Here I show the effect of cilia motility of respiratory epithelium on the efficacy of cholera toxin-based nasal vaccine adjuvant using mice lacking tubulin tyrosine ligase-like family member 1 (Ttll1). Ttll1 is an essential enzyme for appropriate cilia movement, and thus Ttll1-knockout (KO) mice show mucus deposition in the nasal cavity due to impaired ciliary asymmetrical beating. When mice were intranasally immunized with pneumococcal surface protein A (PspA) as vaccine antigen together with cholera toxin (CT) as mucosal adjuvant, Ttll1-KO mice showed higher levels of PspA-specific IgA in the nasal wash and increased numbers of PspA-specific IgA-producing plasma cells in the nasal passages when compared with Ttll1-hetero (He) mice. The enhanced mucosal immune responses were not affected even if the nasal mucus was eliminated with N-acetylcysteine in Ttll1-KO mice. Immunohistological analyses revealed that the vaccine antigen was retained on the follicle-associated epithelium of nasopharynx-associated lymphoid tissue (NALT) for longer time in Ttll1-KO mice than in Ttll1-He mice. In accordance with this finding, I further found that the number of dendritic cells which captured the vaccine antigen was increased in the NALT of Ttll1-KO mice when compared with Ttll1-He mice. These findings demonstrate that the ciliary function of removing vaccine antigen from the NALT epithelial layer is a critical determinant in nasal vaccine efficacy.

この論文で使われている画像

参考文献

1. Fukuyama, Y, King, J.D., Kataoka, K. et al. 2010. Secretory-IgA antibodies play an important role in the immunity to Streptococcus pneumoniae. J. Immunol. 185:1755–62. doi:10.4049/jimmunol.1000831.

2. Miquel‐Clopés, A., Bentley, E.G., Stewart, J.P. and Carding, S.R. 2019. Mucosal vaccines and technology. Clin. Exp. Immunol. 196:205-214. doi:10.1111/cei.13285.

3. Kiyono, H. and Azegami, T. 2015. The mucosal immune system: From dentistry to vaccine development. Proc. Jpn. Acad. Ser. B. 91:423–39. doi:10.2183/pjab.91.423.

4. Kunisawa, J., Nochi, T. and Kiyono, H. 2008. Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol. 29:505– 13. doi:10.1016/j.it.2008.07.008.

5. Yuki, Y. and Kiyono, H. 2003. New generation of mucosal adjuvants for the induction of protective immunity. Rev. Med. Virol. 13:293–310. doi:10.1002/rmv.398.

6. Kelsall, B.L. and Strober, W. 1996. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J. Exp. Med. 183:237–47. doi: 10.1084/jem.183.1.237

7. Mora, J.R., Iwata, M., Eksteen, B. et al. 2006. Generation of gut-homing IgA- secreting B cells by intestinal dendritic cells. Science 314:1157–60. doi:10.1126/science.1132742.

8. Kunisawa, J., Nakanishi, T., Takahashi, I. et al. 2001. Sendai virus fusion protein- mediates simultaneous induction of MHC class I/II-dependent mucosal and systemic immune responses via the nasopharyngeal-associated lymphoreticular tissue immune system. J. Immunol. 167:1406–12. doi:10.4049/jimmunol.167.3.1406.

9. Yamamoto, M., Mcghee, J.R., Hagiwara, Y., Otake, S. and Kiyono, H. 2001. Genetically Manipulated bacterial toxin as a new generation mucosal adjuvant. Scand. J. Immunol. 53:211–7. doi:10.1046/j.1365-3083.2001.00883.x.

10. Xu-Amano, J., Kiyono, H., Jackson, R.J. et al. 1993. Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J. Exp. Med. 178:1309–20. doi:10.1084/jem.178.4.1309.

11. Marinaro, M., Staats, H.F., Hiroi, T. et al. 1995. Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. J. Immunol. 155:4621–9.

12. Lycke, N. and Strober, W. 1989. Cholera toxin promotes B cell isotype differentiation. J. Immunol. 142:3781–7.

13. Lai, S.K., Wang, Y.-Y., Wirtz, D. and Hanes, J. 2009. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:86–100. doi:10.1016/j.addr.2008.09.012.

14. Sheehan, J.K., Kirkham, S., Howard, M. et al. 2004. Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. J. Biol. Chem. 279:15698–705. doi:10.1074/jbc.M313241200.

15. Chilvers, M.A. and O’Callaghan, C. 2000. Local mucociliary defence mechanisms. Paediatr. Respir. Rev. 1:27–34. doi:10.1053/prrv.2000.0009.

16. Janke, C., Rogowski, K., Wloga, D. et al. 2005. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308:1758–62. doi:10.1126/science.1113010.

17. Ikegami, K., Sato, S., Nakamura, K., Ostrowski, L.E. and Setou, M. 2010. Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc. Natl. Acad. Sci. 107:10490–5. doi:10.1073/pnas.1002128107.

18. Grevers, G. 2010. Challenges in reducing the burden of otitis media disease: An ENT perspective on improving management and prospects for prevention. Int. J. Pediatr. Otorhinolaryngol. 74:572–7. doi:10.1016/j.ijporl.2010.03.049.

19. Miyaji, E.N., Oliveira, M.L.S., Carvalho, E. and Ho, P.L. 2013. Serotype- independent pneumococcal vaccines. Cell Mol. Life Sci. 70:3303–26. doi:10.1007/s00018-012-1234-8.

20. Park, I.H., Pritchard, D.G., Cartee, R., Brandao, A., Brandileone, M.C.C. and Nahm, M.H. 2007. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J. Clin. Microbiol. 45:1225–33. doi:10.1128/JCM.02199-06.

21. Calix, J.J. and Nahm, M.H. 2010. A new pneumococcal serotype, 11E, has variably inactivated wcjE gene. J. Infect. Dis. 202:29–38. doi:10.1086/653123.

22. Daniels, C.C., Rogers, P.D. and Shelton, C.M. 2016. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J. Pediatr. Pharmacol. Ther. 21:27–35. doi:10.5863/1551-6776- 21.1.27.

23. Richter, S.S., Heilmann, K.P., Dohrn, C.L., Riahi, F., Diekema, D.J. and Doern, G.V. 2013. Pneumococcal serotypes before and after introduction of conjugate vaccines, United States, 1999–2011. Emerg. Infect. Dis. 19:1074–83. doi:10.3201/eid1907.121830.

24. Hsu, H.E., Shutt, K.A., Moore, M.R. et al. 2009. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N. Engl. J. Med. 360:244–56. doi:10.1056/NEJMoa0800836.

25. Crain, M.J., Waltman, W.D., Turner, J.S. et al. 1990. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect. Immun. 58:3293–9.

26. Moreno, A.T., Oliveira, M.L.S., Ferreira, D.M. et al. 2010. Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. Clin. Vaccine Immunol. 17:439–46. doi:10.1128/CVI.00430-09.

27. Yamamoto, M., Briles, D.E., Yamamoto, S., Ohmura, M., Kiyono, H. and McGhee, J.R. 1998. A Nontoxic adjuvant for mucosal immunity to pneumococcal surface protein A. J. Immunol. 161:4115–21.

28. Suzuki, H., Watari, A., Hashimoto, E. et al. 2015. C-terminal Clostridium perfringens enterotoxin-mediated antigen delivery for nasal pneumococcal vaccine. PLOS ONE 10:e0126352. doi:10.1371/journal.pone.0126352.

29. Tada, R., Suzuki, H., Takahashi, S. et al. 2018. Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int. Immunopharmacol. 61:385–93. doi:10.1016/j.intimp.2018.06.027.

30. Kakutani, H., Kondoh, M., Fukasaka, M., Suzuki, H., Hamakubo, T. and Yagi, K. 2010. Mucosal vaccination using claudin-4-targeting. Biomaterials 31:5463–71. doi:10.1016/j.biomaterials.2010.03.047.

31. Suzuki, H., Nagatake, T., Nasu, A. et al. 2018. Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice. Sci. Rep. 8:2904. doi:10.1038/s41598- 018-21120-7.

32. Lan, H., Suzuki, H., Nagatake, T. et al. 2020. Impaired mucociliary motility enhances antigen-specific nasal IgA immune responses to a cholera toxin-based nasal vaccine. Int. Immunol. 32(8):559-568. doi: doi: 10.1093/intimm/dxaa029.

33. Barthelson, R., Mobasseri, A., Zopf, D., Simon, P. 1998. Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect. Immun. 66(4):1439-44.

34. Rayner, C.F., Jackson, A.D., Rutman, A. et al. 1995. Interaction of pneumolysin- sufficient and -deficient isogenic variants of Streptococcus pneumoniae with human respiratory mucosa. Infect. Immun. 63(2):442-7.

35. Tam, H.H., Melo, M.B, Kang, M. et al. 2016. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. PNAS. 113(43):E6639-E6648. doi: 10.1073/pnas.1606050113.

36. van Ginkel, F.W., Jackson, R.J., Yuki, Y. and McGhee, J.R. 2000. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165:4778–82. doi: 10.4049/jimmunol.165.9.4778

37. Guichard, A., Cruz-Moreno, B., Aguilar, B. et al. 2013. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 14:294–305. doi:10.1016/j.chom.2013.08.001.

38. Terahara, K., Yoshida, M., Igarashi, O. et al. 2008. Comprehensive gene expression profiling of Peyer's patch M cells, villous M-like cells, and intestinal epithelial cells. J. Immunol. 180:7840-7846. doi:10.4049/jimmunol.180.12.7840.

39. Lycke, N., Karlsson, U., Sjolander, A. and Magnusson K.-E. 1991. The Adjuvant Action of Cholera Toxin is Associated with an Increased Intestinal Permeability for Luminal Antigens. Scand. J. Immunol. 33(6):691-8. doi: 10.1111/j.1365- 3083.1991.tb02542.x

40. Holmgren, J., Lycke, N., Czerkinsky, C. 1993. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine. 11(12):1179-84. doi:10.1016/0264-410x(93)90039-z

41. Kogiso, H., Hosogi, S., Ikeuchi, Y. et al. 2018. [Ca2+ ]i modulation of cAMP- stimulated ciliary beat frequency via PDE1 in airway ciliary cells of mice. Exp. Physiol. 103:381–90. doi:10.1113/EP086681.

42. Zhang, R.G., Scott, D.L., Westbrook, M.L. et al. 1995. The three-dimensional crystal structure of cholera toxin. J. Mol. Biol. 251:563–73. doi:10.1006/jmbi.1995.0456.

43. Senkovich, O., Cook, W.J., Mirza, S. et al. 2007. Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein A provides insight into microbial defense mechanism. J. Mol. Biol. 370:701–13. doi:10.1016/j.jmb.2007.04.075.

44. Shinoda, T., Shinya, N., Ito, K. et al. 2016. Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin. Sci. Rep. 6:33632. doi:10.1038/srep33632.

45. Duncan, G.A., Jung, J., Hanes, J. and Suk, J.S. 2016. The mucus barrier to inhaled gene therapy. Mol. Ther. 24:2043–53. doi:10.1038/mt.2016.182.

46. Lai, S.K., Wang, Y.-Y. and Hanes, J. 2009. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61:158–71. doi:10.1016/j.addr.2008.11.002.

47. Yun, K.W., Choi, E.H. and Lee, H.J. 2017. Genetic diversity of pneumococcal surface protein A in invasive pneumococcal isolates from Korean children, 1991- 2016. PLOS ONE 12:e0183968. doi:10.1371/journal.pone.0183968.

48. Ward, W.H., Britton, P. and van Heyningen, S. 1981. The hydrophobicities of cholera toxin, tetanus toxin and their components. Biochem. J. 199:457–60. doi:10.1042/bj1990457

49. Yamamoto, T., Nakazawa, T., Miyata, T., Kaji, A. and Yokota, T. 1984. Evolution and structure of two ADP-ribosylation enterotoxins, Escherichia coli heat-labile toxin and cholera toxin. FEBS Lett. 169:241–6. doi:10.1016/0014- 5793(84)80326-9

50. Liu, M., Zhang, J., Shan, W. and Huang, Y. 2015. Developments of mucus penetrating nanoparticles. Asian J. Pharm. Sci. 10:275–82. doi:10.1016/j.ajps.2014.12.007.

51. Lieleg et al., 2010. Characterization of Particle Translocation through Mucin Hydrogels. Biophys J. 98(9): 1782-1789

52. Yother, J., Handsome, G.L. and Briles, D.E. 1992. Truncated forms of PspA that are secreted from Streptococcus pneumoniae and their use in functional studies and cloning of the pspA gene. J. Bacteriol. 174:610–8. doi:10.1128/jb.174.2.610- 618.1992.

53. Kimura, J., Abe, H., Kamitani, S. et al. 2010. Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction. J. Biol. Chem. 285:401–8. doi:10.1074/jbc.M109.051417.

54. Leitch, J.J., Brosseau, C.L., Roscoe, S.G., Bessonov, K., Dutcher, J.R., Lipkowski, J. 2013. Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane. Langmuir 29:965–76. doi:10.1021/la304939k.

55. Kabir, S. 1986. Charge heterogeneity of cholera toxin and its subunits. FEMS Microbiol. Lett. 37:155–62. doi:10.1111/j.1574-6968.1986.tb01785.x.

56. Nagatake, T., Suzuki, H., Hirata, S.-I. et al. 2018. Immunological association of inducible bronchus-associated lymphoid tissue organogenesis in Ag85B-rHPIV2 vaccine-induced anti-tuberculosis mucosal immune responses in mice. Int. Immunol. 30:471–81. doi:10.1093/intimm/dxy046.

57. Kim, D.-Y., Sato, A., Fukuyama, S. et al. 2011. The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. J. Immunol. 186:4253–62. doi:10.4049/jimmunol.0903794.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る