リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Probing the Dissolved Gas Concentration on the Electrode through Laser-Assisted Bubbles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Probing the Dissolved Gas Concentration on the Electrode through Laser-Assisted Bubbles

Ando, Kota Uchimoto, Yoshiharu Nakajima, Takashi 京都大学 DOI:10.1021/acs.jpcc.1c06816

2021.09

概要

We demonstrate that the irradiation of a single laser pulse onto the electrode assists the formation of bubbles, and this phenomenon can be conveniently used to probe the dissolved gas concentration on the electrode. The obtained concentrations agree well with the values inferred through linear extrapolation of gas concentration in proximity to the electrode to the electrode surface.

この論文で使われている画像

参考文献

(1)

Lu, Z.; Zhu, W.; Yu, X.; Zhang, H.; Li, Y.; Sun, X.; Wang, X.; Wang, H.; Wang, J.; Luo,

J.; Lei, X.; Jiang, L. Ultrahigh Hydrogen Evolution Performance of Under-Water

15

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

“Superaerophobic” MoS2 Nanostructured Electrodes. Adv. Mater. 2014, 26 (17), 2683–

2687. https://doi.org/10.1002/adma.201304759.

(2)

Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K. Nanostructured Materials on 3D Nickel Foam

as Electrocatalysts for Water Splitting. Nanoscale 2017, 9 (34), 12231–12247.

https://doi.org/10.1039/c7nr04187j.

(3)

Darband, G. B.; Aliofkhazraei, M.; Shanmugam, S. Recent Advances in Methods and

Technologies for Enhancing Bubble Detachment during Electrochemical Water Splitting.

Renew. Sustain. Energy Rev. 2019, 114 (July), 109300.

https://doi.org/10.1016/j.rser.2019.109300.

(4)

Wang, H.; Gao, L. Recent Developments in Electrochemical Hydrogen Evolution

Reaction. Curr. Opin. Electrochem. 2018, 7, 7–14.

https://doi.org/10.1016/j.coelec.2017.10.010.

(5)

Dubouis, N.; Grimaud, A. The Hydrogen Evolution Reaction: From Material to Interfacial

Descriptors. Chem. Sci. 2019, 10 (40), 9165–9181. https://doi.org/10.1039/c9sc03831k.

(6)

McKone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. EarthAbundant Hydrogen Evolution Electrocatalysts. Chem. Sci. 2014, 5 (3), 865–878.

https://doi.org/10.1039/c3sc51711j.

(7)

Ahn, S. H.; Choi, I.; Park, H. Y.; Hwang, S. J.; Yoo, S. J.; Cho, E.; Kim, H. J.;

Henkensmeier, D.; Nam, S. W.; Kim, S. K.; Jang, J. H. Effect of Morphology of

Electrodeposited Ni Catalysts on the Behavior of Bubbles Generated during the Oxygen

16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Evolution Reaction in Alkaline Water Electrolysis. Chem. Commun. 2013, 49 (81), 9323–

9325. https://doi.org/10.1039/c3cc44891f.

(8)

Maheshwari, S.; Van Kruijsdijk, C.; Sanyal, S.; Harvey, A. D. Nucleation and Growth of a

Nanobubble on Rough Surfaces. Langmuir 2020, 36 (15), 4108–4115.

https://doi.org/10.1021/acs.langmuir.0c00635.

(9)

Craig, V. S. J.; Ninham, B. W.; Pashley, R. M. The Effect of Electrolytes on Bubble

Coalescence in Water. J. Phys. Chem. 1993, 97 (39), 10192–10197.

https://doi.org/10.1021/j100141a047.

(10)

Chandran, P.; Bakshi, S.; Chatterjee, D. Study on the Characteristics of Hydrogen Bubble

Formation and Its Transport during Electrolysis of Water. Chem. Eng. Sci. 2015, 138, 99–

109. https://doi.org/10.1016/j.ces.2015.07.041.

(11)

Zhao, X.; Ren, H.; Luo, L. Gas Bubbles in Electrochemical Gas Evolution Reactions.

Langmuir 2019, 35 (16), 5392–5408. https://doi.org/10.1021/acs.langmuir.9b00119.

(12)

Chen, Q.; Wiedenroth, H. S.; German, S. R.; White, H. S. Electrochemical Nucleation of

Stable N2 Nanobubbles at Pt Nanoelectrodes. J. Am. Chem. Soc. 2015, 137 (37), 12064–

12069. https://doi.org/10.1021/jacs.5b07147.

(13)

German, S. R.; Edwards, M. A.; Ren, H.; White, H. S. Critical Nuclei Size, Rate, and

Activation Energy of H2 Gas Nucleation. J. Am. Chem. Soc. 2018, 140 (11), 4047–4053.

https://doi.org/10.1021/jacs.7b13457.

17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(14)

Perez Sirkin, Y. A.; Gadea, E. D.; Scherlis, D. A.; Molinero, V. Mechanisms of

Nucleation and Stationary States of Electrochemically Generated Nanobubbles. J. Am.

Chem. Soc. 2019, 141, 10801–10811. https://doi.org/10.1021/jacs.9b04479.

(15)

Hao, R.; Fan, Y.; Howard, M. D.; Vaughan, J. C.; Zhang, B. Imaging Nanobubble

Nucleation and Hydrogen Spillover during Electrocatalytic Water Splitting. Proc. Natl.

Acad. Sci. U. S. A. 2018, 115 (23), 5878–5883. https://doi.org/10.1073/pnas.1800945115.

(16)

Battistel, A.; Dennison, C. R.; Lesch, A.; Girault, H. H. Local Study on Hydrogen and

Hydrogen Gas Bubble Formation on a Platinum Electrode. J. Phys. Chem. C 2019, 123

(17), 10849–10856. https://doi.org/10.1021/acs.jpcc.8b10920.

(17)

Chen, X.; Maljusch, A.; Rincón, R. A.; Battistel, A.; Bandarenka, A. S.; Schuhmann, W.

Local Visualization of Catalytic Activity at Gas Evolving Electrodes Using FrequencyDependent Scanning Electrochemical Microscopy. Chem. Commun. 2014, 50 (87),

13250–13253. https://doi.org/10.1039/c4cc06100d.

(18)

Wang, Y.; Gordon, E.; Ren, H. Mapping the Nucleation of H2 Bubbles on Polycrystalline

Pt via Scanning Electrochemical Cell Microscopy. J. Phys. Chem. Lett. 2019, 10 (14),

3887–3892. https://doi.org/10.1021/acs.jpclett.9b01414.

(19)

Ando, K.; Uchimoto, Y.; Nakajima, T. Concentration Profile of Dissolved Gas during the

Hydrogen Gas Evolution: An Optical Approach. Chem. Commun. 2020, 56, 14483–14486.

https://doi.org/10.1039/d0cc05695b.

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(20)

Lasemi, N.; Pacher, U.; Zhigilei, L. V.; Bomatí-Miguel, O.; Lahoz, R.; Kautek, W. Pulsed

Laser Ablation and Incubation of Nickel, Iron and Tungsten in Liquids and Air. Appl.

Surf. Sci. 2018, 433, 772–779. https://doi.org/10.1016/j.apsusc.2017.10.082.

(21)

Climent, V.; Coles, B. A.; Compton, R. G. Laser-Induced Potential Transients on a

Au(111) Single-Crystal Electrode. Determination of the Potential of Maximum Entropy of

Double-Layer Formation. J. Phys. Chem. B 2002, 106 (20), 5258–5265.

https://doi.org/10.1021/jp020054q.

(22)

Fernández-Prini, R.; Alvarez, J. L.; Harvey, A. H. Henry’s Constants and Vapor-Liquid

Distribution Constants for Gaseous Solutes in H2O and D2O at High Temperatures. J.

Phys. Chem. Ref. Data 2003, 32 (2), 903–916. https://doi.org/10.1063/1.1564818.

(23)

Li, D.; Beyer, C.; Bauer, S. A Unified Phase Equilibrium Model for Hydrogen Solubility

and Solution Density. Int. J. Hydrogen Energy 2018, 43 (1), 512–529.

https://doi.org/10.1016/j.ijhydene.2017.07.228.

(24)

Union, I.; Pure, O. F.; Chemistry, A. Solubility Data Series; 2014; Vol. 30.

https://doi.org/10.1515/ci.2008.30.6.19.

(25)

Epstein, P. S.; Plesset, M. S. On the Stability of Gas Bubbles in Liquid-Gas Solutions. J.

Chem. Phys. 1950, 18 (11), 1505–1509. https://doi.org/10.1063/1.1747520.

19

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

TOC Graphic

20

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る