リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Impact of Anthropogenic Activities on Global Terrestrial Carbon Fluxes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Impact of Anthropogenic Activities on Global Terrestrial Carbon Fluxes

Melnikova Irina 東北大学

2020.03.25

概要

The anthropogenic activity via land use change and fossil fuel and cement emissions substantially affect the Earth system, leading to the atmospheric CO2 increase that is recognized to be the main cause of the increasing global surface temperatures and consequent climate change. The unprecedented human-induced alterations in the Earth system since the Industrial Revolution drove the carbon cycle out of equilibrium, so that currently, the global biosphere acts as an uptake of more than half of anthropogenic carbon emissions. The largest and the most uncertain contributor to the interannual carbon uptake is land. An accurate understanding of the impact of anthropogenic activity on the land carbon uptake is crucial for quantifying the future carbon-climate feedbacks.

The land uptake is the net balance of gross primary production (GPP) and terrestrial ecosystem respiration (TER). GPP and TER exhibit large magnitudes and interannual variabilities that makes it difficult to distinguish the impacts of anthropogenic activity on the fluxes, i.e., the GPP and TER anthropogenic effects, from the impacts of natural climate variability, i.e. GPP and TER natural effects. Factorial simulations using several biosphere models have been used to estimate the effects of long-term climate change on global GPP and TER. However, no study has integrated large-ensemble climate simulation data into a biosphere model to realistically estimate global terrestrial carbon fluxes with associated uncertainty and to project the future changes in the carbon fluxes by using statistical tools such as the probability density functions.

This thesis presents an approach to estimate the global GPP and TER with associated climate data-induced uncertainty that combines a diagnostic biosphere model with a large- ensemble climate simulation data set. I aim to distinguish the GPP and TER anthropogenic and natural effects in present 1952–2010 climate and future +2K and +4K warming climate simulations, identify the drivers and explore the probabilistic changes in GPP and TER with warming. In order to get realistic estimates of the global terrestrial GPP and TER with the associated input data-induced uncertainty, I force the biosphere model BEAMS with historical (HPB), “nonwarming” (HPB NAT), and future +2K and +4K (warmer than preindustrial) climate simulations of the Database for Policy Decision-Making for Future Climate Change (d4PDF). In order to identify the drivers of GPP and TER anthropogenic effects, I carry out several sensitivity experiments.

First, I provide evidence for an increasing anthropogenic effect on global terrestrial GPP. The GPP anthropogenic effect is driven by CO2 fertilization, which is projected to weaken or saturate by 2050–2150, depending on the representative concentration pathway scenario used. Model results suggest that shortwave radiation couples with ENSO conditions and volcanic eruptions to drive the natural GPP effect. While currently, the CO2 fertilization effect primarily drives the tropical GPP increase that dominates the global GPP anthropogenic effect, in the future warmer world, the climate drivers are projected to constrain the tropical GPP increase, so that the climate-driven non-tropical GPP increase takes over the dominancy of the GPP anthropogenic effect.

Second, I show that despite the benefits of CO2 fertilization effect on global GPP, the GPP anthropogenic effect cannot catch up with the increasing carbon emissions. Most likely, the major biosphere flux responsible for the increased atmospheric carbon growth is TER. The multi-ensemble model simulations show that both magnitude and interannual variability of TER increase in warmer climates with larger relative increase in high latitudes. The higher TER variability corresponds to higher TER in the tropics and mid-to-high northern latitudes. The main driver of future TER anthropogenic effect is temperature, while the effects of vapor pressure and precipitation are uncertain due to regional uncertainties in the climate projections. While in 1952–2010, temperature played only a minor role in the TER anthropogenic effect, its role is projected to increase in the future warmer climates because the contribution of temperature in driving TER increases with warming exponentially according to Q10 function.

Overall, the findings of the present study clarify the mechanism of the changes in land carbon fluxes due to the impacts of the anthropogenic activity on the Earth system. I show that both GPP and TER anthropogenic effects increased in the past, and are projected to increase in future warmer climates. While the GPP anthropogenic effect is the largest in the tropics, the TER anthropogenic effect exhibits bipolarity. While in the future climate simulations, the GPP anthropogenic effect is projected to weaken at higher CO2 concentrations, no synchronic weakening is projected for the TER anthropogenic effect with higher temperatures. The disproportional increase in TER with warming towards high latitudes that are a massive reservoir of soil carbon highlight the need in the urgent action for stronger mitigation of anthropogenic emissions.

この論文で使われている画像

参考文献

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., et al. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147-1167.

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., et al. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348(6237), 895-899.

Alton, P. B. (2018). Decadal trends in photosynthetic capacity and leaf area index inferred from satellite remote sensing for global vegetation types. Agricultural and Forest Meteorology, 250-251, 361-375.

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., et al. (2015). Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 53(3), 785-818.

Baldocchi, D., Ryu, Y., & Keenan, T. (2016). Terrestrial Carbon Cycle Variability. F1000Research, 5, F1000 Faculty Rev-2371.

Ballantyne, A., Smith, W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P., et al. (2017). Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 7, 148.

Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., & White, J. W. C. (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488, 70.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al. (2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 1184984.

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., & Williams, M. (2016). The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proceedings of the National Academy of Sciences, 113(5), 1285-1290.

Boden, T., Andres, R., & Marland, G. (2017). Global, regional, and national fossil-fuel CO2 emissions (1751-2014) (v. 2017). In: Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States).

Bonan, G. (2015). Ecological Climatology: Concepts and Applications (3 ed.). Cambridge: Cambridge University Press.

Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80-83.

Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences, 7(6), 1915-1926.

Bond-Lamberty, B. P., & Thomson, A. M. (2018). A Global Database of Soil Respiration Data, Version 4.0. In: ORNL Distributed Active Archive Center.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., et al. (2013). Clouds and Aerosols. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 571–658). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P., & Tans, P. P. (2000). Regional Changes in Carbon Dioxide Fluxes of Land and Oceans Since 1980. Science, 290(5495), 1342-1346.

Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., et al. (2007a). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866-18870.

Canadell, J. G., Pataki, D. E., Gifford, R., Houghton, R. A., Luo, Y., Raupach, M. R., et al. (2007b). Saturation of the terrestrial carbon sink. In Terrestrial ecosystems in a changing world (pp. 59-78): Springer.

Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., et al. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213.

Ceppi, P., Brient, F., Zelinka, M. D., & Hartmann, D. L. (2017). Cloud feedback mechanisms and their representation in global climate models. Wiley Interdisciplinary Reviews: Climate Change, 8(4), e465.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et al. (2013). Carbon and Other Biogeochemical Cycles. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465– 570). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., et al. (2011). The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137(654), 1-28.

De Kauwe, M. G., Lin, Y. S., Wright, I. J., Medlyn, B. E., Crous, K. Y., Ellsworth, D. S., et al. (2016). A test of the ‘one‐point method’for estimating maximum carboxylation capacity from field‐measured, light‐saturated photosynthesis. New Phytologist, 210(3), 1130-1144.

Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., & Bosilovich, M. G. (2012). Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations. Journal of Climate, 25(6), 1916-1944.

Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597.

Dessler, A. E. (2010). A Determination of the Cloud Feedback from Climate Variations over the Past Decade. Science, 330(6010), 1523-1527.

Doney, S. C., Lindsay, K., Fung, I., & John, J. (2006). Natural Variability in a Stable, 1000- Yr Global Coupled Climate–Carbon Cycle Simulation. Journal of Climate, 19(13), 3033-3054.

Drake, B. L., Hanson, D. T., Lowrey, T. K., & Sharp, Z. D. (2017). The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest. Global Change Biology, 23(2), 782-792.

Fang, Y., Michalak, A., M., Schwalm, C., R., Huntzinger, D., N., Berry, J., A., Ciais, P., et al. (2017). Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environmental Research Letters, 12(6), 064007.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2).

Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., et al. (2016). Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science, 351(6274), 696-699.

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., et al. (2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21(8), 2861-2880.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168-182.

Friedlingstein, P., Fung, I., Holland, E., John, J., Brasseur, G., Erickson, D., & Schimel, D. (1995). On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochemical Cycles, 9(4), 541-556.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., & Knutti, R. (2014). Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate, 27(2), 511-526.

Garonna, I., de Jong, R., Stöckli, R., Schmid, B., Schenkel, D., Schimel, D., & Schaepman, M. E. (2018). Shifting relative importance of climatic constraints on land surface phenology. Environmental Research Letters, 13(2), 024025.

Gettelman, A., & Sherwood, S. C. (2016). Processes Responsible for Cloud Feedback. Current Climate Change Reports, 2(4), 179-189.

Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B., Wofsy, S. C., et al. (2013). Enhanced Seasonal Exchange of CO<sub>2</sub> by Northern Ecosystems Since 1960. Science.

Gu, L., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J., Urbanski, S. P., & Boden, T. A. (2003). Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis. Science, 299(5615), 2035-2038.

Harris, I., Jones, P., Osborn, T., & Lister, D. (2014). Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34(3), 623-642.

Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., & Reichstein, M. (2015). Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences, 12(13), 4121-4132.

Hayasaka, T. (2016). The Long-term Variation in Surface Shortwave Irradiance in China and Japan: A Review. Journal of the Meteorological Society of Japan. Ser. II, 94(5), 393- 414.

Hirahara, S., Ishii, M., & Fukuda, Y. (2014). Centennial-Scale Sea Surface Temperature Analysis and Its Uncertainty. Journal of Climate, 27(1), 57-75.

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., et al. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9(12), 5125-5142.

Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W., Fang, Y., et al. (2017). Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Scientific Reports, 7(1), 4765.

Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., et al. (2013). The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design. Geoscientific Model Development, 6(6), 2121-2133.

Huntzinger, D. N., Schwalm, C. R., Wei, Y., Cook, R. B., Michalak, A. M., Schaefer, K., et al. (2018). NACP MsTMIP: Global 0.5-degree Model Outputs in Standard Format, Version 1.0. In: ORNL Distributed Active Archive Center.

Hursh, A., Ballantyne, A., Cooper, L., Maneta, M., Kimball, J., & Watts, J. (2017). The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology, 23(5), 2090-2103.

Ichii, K., Hashimoto, H., Nemani, R., & White, M. (2005). Modeling the interannual variability and trends in gross and net primary productivity of tropical forests from 1982 to 1999. Global and Planetary Change, 48(4), 274-286.

Iizumi, T., Shiogama, H., Imada, Y., Hanasaki, N., Takikawa, H., & Nishimori, M. (2018). Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels. International Journal of Climatology, 38(14), 5405-5417.

IPCC. (2013a). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley Eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

IPCC. (2013b). Summary for Policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–30). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Ito, A., Nishina, K., Reyer, C. P., François, L., Henrot, A.-J., Munhoven, G., et al. (2017). Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environmental Research Letters, 12(8), 085001.

Jiang, C., Ryu, Y., Fang, H., Myneni, R., Claverie, M., & Zhu, Z. (2017). Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Global Change Biology, 23(10), 4133-4146.

Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., et al. (2018). Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data- Driven Models and Eddy Covariance Flux Data. Remote Sensing, 10(9), 1346.

Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., & Valdes, P. J. (2004). Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles, 18(2).

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., et al. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 116(G3).

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., et al. (2017). Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), 437-471.

Kanniah, K. D., Beringer, J., North, P., & Hutley, L. (2012). Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review. Progress in Physical Geography, 36(2), 209-237.

Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H., Raupach, M., & Collatz, G. J. (2016). Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 7, 13428.

Knyazikhin, Y., Glassy, J., Privette, J., Tian, Y., Lotsch, A., Zhang, Y., et al. (1999). MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document.

Theoretical Basis Document, NASA Goddard Space Flight Center, Greenbelt, MD, 20771.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. (2015). The JRA- 55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5-48.

Kolus, H. R., Huntzinger, D. N., Schwalm, C. R., Fisher, J. B., McKay, N., Fang, Y., et al. (2019). Land carbon models underestimate the severity and duration of drought’s impact on plant productivity. Scientific Reports, 9(1), 2758.

Krueger, O., Schenk, F., Feser, F., & Weisse, R. (2013). Inconsistencies between Long-Term Trends in Storminess Derived from the 20CR Reanalysis and Observations. Journal of Climate, 26(3), 868-874.

Kunkel, K. E., Easterling, D. R., Hubbard, K., & Redmond, K. (2004). Temporal variations in frost-free season in the United States: 1895–2000. Geophysical Research Letters, 31(3).

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., et al. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 16(1), 187-208.

Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., & Rennie, J. (2011). An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research: Atmospheres, 116(D19).

Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., et al. (2016). Global Carbon Budget 2016. Earth Syst. Sci. Data, 8(2), 605-649.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., et al. (2018). Global Carbon Budget 2018. Earth Syst. Sci. Data, 10(4), 2141-2194.

Li, J.-L. F., Waliser, D. E., Stephens, G., Lee, S., L'Ecuyer, T., Kato, S., et al. (2013). Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. Journal of Geophysical Research: Atmospheres, 118(15), 8166-8184.

Li, W., Ciais, P., Wang, Y., Yin, Y., Peng, S., Zhu, Z., et al. (2018). Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 45(2), 1058-1068.

Liu, F., Chai, J., Huang, G., Liu, J., & Chen, Z. (2015). Modulation of decadal ENSO-like variation by effective solar radiation. Dynamics of Atmospheres and Oceans, 72, 52- 61.

Liu, Y., Liu, R., & Chen, J. M. (2012). Retrospective retrieval of long‐term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. Journal of Geophysical Research: Biogeosciences, 117(G4).

Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., et al. (2018a). Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing of Environment, 206, 174-188.

Liu, Z., Ballantyne, A. P., Poulter, B., Anderegg, W. R. L., Li, W., Bastos, A., & Ciais, P. (2018b). Precipitation thresholds regulate net carbon exchange at the continental scale. Nature Communications, 9(1), 3596.

Lucht, W., Prentice, I. C., Myneni, R. B., Sitch, S., Friedlingstein, P., Cramer, W., et al. (2002). Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect. Science, 296(5573), 1687-1689.

Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453(7193), 379-382.

Ma, J., Yan, X., Dong, W., & Chou, J. (2015). Gross primary production of global forest ecosystems has been overestimated. Scientific Reports, 5, 10820.

Mao, J., Fu, W., Shi, X., Ricciuto, D. M., Fisher, J. B., Dickinson, R. E., et al. (2015). Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 10(9), 094008.

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213.

Meiyappan, P., & Jain, A. K. (2012). Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Frontiers of Earth Science, 6(2), 122-139.

Melnikova, I., Awaya, Y., Saitoh, T., Muraoka, H., & Sasai, T. (2018). Estimation of Leaf Area Index in a Mountain Forest of Central Japan with a 30-m Spatial Resolution Based on Landsat Operational Land Imager Imagery: An Application of a Simple Model for Seasonal Monitoring. Remote Sensing, 10(2), 179.

Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., & Cox, P. M. (2009). Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014.

Mizuta, R., Murata, A., Ishii, M., Shiogama, H., Hibino, K., Mori, N., et al. (2017). Over 5,000 Years of Ensemble Future Climate Simulations by 60-km Global and 20-km Regional Atmospheric Models. Bulletin of the American Meteorological Society, 98(7), 1383-1398.

Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., et al. (2012). Climate Simulations Using MRI-AGCM3.2 with 20-km Grid. Journal of the Meteorological Society of Japan. Ser. II, 90A, 233-258.

Murray-Tortarolo, G., Anav, A., Friedlingstein, P., Sitch, S., Piao, S., Zhu, Z., et al. (2013). Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sensing, 5(10), 4819.

Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 698-702.

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560-1563.

Norris, J. R., Allen, R. J., Evan, A. T., Zelinka, M. D., O’Dell, C. W., & Klein, S. A. (2016). Evidence for climate change in the satellite cloud record. Nature, 536, 72.

Norton, A. J., Rayner, P. J., Koffi, E. N., Scholze, M., Silver, J. D., & Wang, Y.-P. (2018). Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences Discussions, 2018, 1-40.

Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., et al. (2010). Technical description of version 4.0 of the Community Land Model (CLM).

Pan, N., Feng, X., Fu, B., Wang, S., Ji, F., & Pan, S. (2018). Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 214, 59-72.

Parton, W., Scurlock, J., Ojima, D., Gilmanov, T., Scholes, R., Schimel, D., et al. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7(4), 785-809.

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., et al. (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19(7), 2117-2132.

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., et al. (2013). Climate extremes and the carbon cycle. Nature, 500, 287.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9), 1424- 1439.

Richardson, T. B., Forster, P. M., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., et al. (2018). Drivers of Precipitation Change: An Energetic Understanding. Journal of Climate, 31(23), 9641-9657.

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., et al. (2010). NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010. In. Boulder, Colo: Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.

Sasai, T., Ichii, K., Yamaguchi, Y., & Nemani, R. (2005). Simulating terrestrial carbon fluxes using the new biosphere model “biosphere model integrating eco‐physiological and mechanistic approaches using satellite data" (BEAMS). Journal of Geophysical Research: Biogeosciences, 110(G2).

Sasai, T., Obikawa, H., Murakami, K., Kato, S., Matsunaga, T., & Nemani, R. R. (2016). Estimation of net ecosystem production in Asia using the diagnostic‐type ecosystem model with a 10‐km grid‐scale resolution. Journal of Geophysical Research: Biogeosciences.

Sasai, T., Okamoto, K., Hiyama, T., & Yamaguchi, Y. (2007). Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale. Ecological Modelling, 208(2), 135-144.

Sato, H., Kumagai, T., Takahashi, A., & Katul, G. G. (2015). Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO2-enriched climate conditions. Journal of Geophysical Research: Biogeosciences, 120(5), 979-988.

Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend, P., et al. (2015a). Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 21(5), 1762-1776.

Schimel, D., Stephens, B. B., & Fisher, J. B. (2015b). Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436-441.

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., & Ziese, M. (2011). GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. In.

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., et al. (2015). Climate change and the permafrost carbon feedback. Nature, 520, 171.

Schwalm, C. R., Huntzinger, D. N., Fisher, J. B., Michalak, A. M., Bowman, K., Ciais, P., et al. (2015). Toward “optimal” integration of terrestrial biosphere models. Geophysical Research Letters, 42(11), 4418-4428.

Setoyama, Y., & Sasai, T. (2013). Analyzing decadal net ecosystem production control factors and the effects of recent climate events in Japan. Journal of Geophysical Research: Biogeosciences, 118(1), 337-351.

Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19(13), 3088-3111.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S., Murray-Tortarolo, G., Ahlström, A., et al. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12(3), 653-679.

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9), 2015-2039.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161-185.

Slingo, A. (1989). A GCM Parameterization for the Shortwave Radiative Properties of Water Clouds. Journal of the Atmospheric Sciences, 46(10), 1419-1427.

Smith, B., Prentice, I. C., & Sykes, M. T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography, 10(6), 621-637.

Smith, W. K., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg, W. R. L., Wieder, W. R., et al. (2015). Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nature Climate Change, 6, 306.

Stöckli, R., Rutishauser, T., Baker, I., Liniger, M. A., & Denning, A. S. (2011). A global reanalysis of vegetation phenology. Journal of Geophysical Research: Biogeosciences, 116(G3).

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., et al. (2016). Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13(14), 4291-4313.

Trenberth, K. E., & Fasullo, J. T. (2009). Global warming due to increasing absorbed solar radiation. Geophysical Research Letters, 36(7).

van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law, B. E., et al. (2011). Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 151(7), 765-773.

Verger, A., Filella, I., Baret, F., & Peñuelas, J. (2016). Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sensing of Environment, 178, 1-14.

von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., et al. (2018). Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences, 15(1), 1293-1318.

Wang, A., & Zeng, X. (2013). Development of Global Hourly 0.5° Land Surface Air Temperature Datasets. Journal of Climate, 26(19), 7676-7691.

Wang, J., Dong, J., Yi, Y., Lu, G., Oyler, J., Smith, W., et al. (2017). Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012. Journal of Geophysical Research: Biogeosciences, 122(1), 261-278.

Wang, W., Ciais, P., Nemani, R. R., Canadell, J. G., Piao, S., Sitch, S., et al. (2013). Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proceedings of the National Academy of Sciences, 110(32), 13061-13066.

Webb, R. S., Rosenzweig, C. E., & Levine, E. R. (1993). Specifying land surface characteristics in general circulation models: Soil profile data set and derived water- holding capacities. Global Biogeochemical Cycles, 7(1), 97-108.

Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., et al. (2014). The North American carbon program multi-scale synthesis and terrestrial model intercomparison project–Part 2: environmental driver data. Geoscientific Model Development Discussions, 7, 2875-2893.

Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper, S. C., Yoshimura, K., et al. (2011). Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño. Nature, 477, 579.

Wild, M. (2012). Enlightening Global Dimming and Brightening. Bulletin of the American Meteorological Society, 93(1), 27-37.

Wild, M. (2016). Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdisciplinary Reviews: Climate Change, 7(1), 91-107.

Xiao, J., Liu, S., & Stoy, P. C. (2016). Preface: Impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences(13), 3665-3675.

Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., & Song, J. (2014). Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 209-223.

Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., & Jin, F.-F. (2009). El Niño in a changing climate. Nature, 461, 511.

Yuan, H., Dai, Y., Xiao, Z., Ji, D., & Shangguan, W. (2011). Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sensing of Environment, 115(5), 1171-1187.

Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., et al. (2012). A new global climate model of the Meteorological Research Institute: MRI- CGCM3—model description and basic performance—. Journal of the Meteorological Society of Japan. Ser. II, 90, 23-64.

Zeng, N., Mariotti, A., & Wetzel, P. (2005). Terrestrial mechanisms of interannual CO2 variability. Global Biogeochemical Cycles, 19(1).

Zhang, X., Liang, S., Wang, G., Yao, Y., Jiang, B., & Cheng, J. (2016). Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sensing, 8(3), 225.

Zhang, Y., Dannenberg, M. P., Hwang, T., & Song, C. (2019a). El Niño–Southern Oscillation-induced variability of terrestrial gross primary production during the satellite era. Journal of Geophysical Research: Biogeosciences, 124.

Zhang, Y., Song, C., Band, L. E., & Sun, G. (2019b). No Proportional Increase of Terrestrial Gross Carbon Sequestration From the Greening Earth. Journal of Geophysical Research: Biogeosciences, 124(8), 2540-2553.

Zhao, M., & Running, S. W. (2010). Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science, 329(5994), 940-943.

Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., et al. (2013). Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 5(2), 927-948.

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., et al. (2016). Greening of the Earth and its drivers. Nature Climate Change.

Zou, L., Wang, L., Lin, A., Zhu, H., Peng, Y., & Zhao, Z. (2016). Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. Journal of Atmospheric and Solar-Terrestrial Physics, 146, 110-122.

Zscheischler, J., Mahecha, M. D., Von Buttlar, J., Harmeling, S., Jung, M., Rammig, A., et al. (2014a). A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 9(3), 035001.

Zscheischler, J., Michalak, A. M., Schwalm, C., Mahecha, M. D., Huntzinger, D. N., Reichstein, M., et al. (2014b). Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 28(6), 585-600.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る