リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of 320GHz Interferometer System for Electron Density Measurement in Heliotron J」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of 320GHz Interferometer System for Electron Density Measurement in Heliotron J

ZHANG, Pengfei 京都大学 DOI:10.14989/doctor.k24975

2023.11.24

概要

1.1 Background
Recent climate changes have had widespread impacts on human and natural systems,
with the major contributor being the extensive release of greenhouse gases as a result of
human activities [1]. The rise in global temperature as shown in Fig. 1.1, which is a direct
outcome of human-induced climate change [2]. The emission of greenhouse gases since
the era of human industrialization is the main influence on the increase of global
temperature. The massive use of fossil fuels such as coal and oil for power and electricity
required for industrialization has led to unprecedented greenhouse gas emissions,
bringing about an increase in global temperatures and causing global climate change in
recent years. The greenhouse gases released by humans in the last half century and their
composition are shown in Fig. 1.2 [1]. Cumulative emissions of carbon dioxide largely
determine global mean surface warming by the late 21st century and beyond. To mitigate
climate change caused by rising temperatures, countries around the world have begun
acting. As of early 2022, nearly three-quarters of the world’s global greenhouse gas
emissions are covered by a net-zero law, policy or political pledge, identifying a method
of reducing carbon dioxide that can be implemented along with social development has
become a focus of the international community [2].
To achieve net-zero carbon emission, the most direct way is to replace fossil energy
with new energy, as shown in Fig. 1.3, since the fossil fuel emits most of the carbon
dioxide [1,3,4]. The governments around the world vigorously develop new energy
sources represented by wind, solar and nuclear energy [5,6]. ...

この論文で使われている画像

参考文献

[1] Adopted I. Climate change 2014 synthesis report[J]. IPCC: Geneva, Szwitzerland,

2014.

[2] Lindsey, Rebecca, and LuAnn Dahlman. "Climate change: Global

temperature." Climate. gov 16 (2020).

[3] Chen, Lin, et al. "Strategies to achieve a carbon neutral society: a

review." Environmental Chemistry Letters 20.4 (2022): 2277-2310.

[4] Fankhauser, Sam, et al. "The meaning of net zero and how to get it right." Nature

Climate Change 12.1 (2022): 15-21.

[5] Kang, Meimei, et al. "Balancing carbon emission reductions and social economic

development for sustainable development: Experience from 24 countries." Chinese

Geographical Science 30 (2020): 379-396.

[6] Deutch, John M., et al. "Update of the MIT 2003 future of nuclear power." Cambridge

mass.: Report for massachusetts institute of technology. retrieved september 17 (2009):

2009.

[7] Patterson, Walter C. Nuclear power. London: Penguin Books, 1976.

[8] EUROfusion Consortium Research Institutions. Fusion History Timeline.

https://euro-fusion.org/fusion/history-of-fusion/.

[9] EUROfusion Consortium Research Institutions. Fusion on the sun. https://eurofusion.org/fusion/fusion-on-the-sun/

[10] Wesson, John, and David J. Campbell. Tokamaks. Vol. 149. Oxford university press,

2011.

[11] Francis F. Chen, An Indispensable Truth (published in Springer, 2011).

[12] L.A. Artsimovich et al., Proceedings of Plasma Physics and Controlled Nuclear

Fusion Research, 1 (1968) 17.

[13] N.J Peacock et al., Nature, 224 (1969) 488.

[14] G. Grieger et al, Nuclear Fusion, 25 (1985) 1231.

[15] M. Yoshikawa, Nuclear Fusion, 25 (1985) 1081.

[16] R. Aymar, IEEE Transaction of Plasma Science, 25 (1997) 1187.

[17] Spitzer Jr, Lyman. "The stellarator concept." The Physics of Fluids 1.4 (1958): 253264.

[18] MATSUOKA Keisuke. "New Trend of Helical System Research" J. Plasma Fusion

Res. Vol.78, No.3 (2002) 200 – 204

[19] K. Uo et al., Proceedings of the workshop, Varenna, (1977) 369.

[20] K. Nishimura et al., Fusion Technology, 17 (1990) 86.

[21] A. Iiyoshi et al., Fusion Technology, 17 (1990) 169.

[22] J. Sapper and H. Renner, Fusion Technology, 17 (1990) 62.

[23] Padron, Ivan, ed. Interferometry: Research and Applications in Science and

Technology. BoD–Books on Demand, 2012.

[24] Bass, Michael, et al., eds. Handbook of optics. Vol. 2. New York: McGraw-Hill, 1995.

128

[25]Hariharan, Parameswaran. Basics of interferometry. Elsevier, 2010.

[26] Hutchinson, Ian H. "Principles of plasma diagnostics." Plasma Physics and

Controlled Fusion 44.12 (2002): 2603-2603.

[27] Hariharan, Parameswaran. Optical interferometry 2e. Elsevier, 2003.

[28] Donné, A. J. H. "High spatial resolution interferometry and polarimetry in hot

plasmas." Review of scientific instruments 66.6 (1995): 3407-3423.

[29] Akiyama, T., et al. "Interferometer systems on LHD." Fusion Science and

Technology 58.1 (2010): 352-363.

[30] Li, Y. G., et al. "A new high sensitivity far-infrared laser interferometer for the HL2A tokamak." Review of Scientific Instruments 88.8 (2017): 083508.

[31] Deng, Chuanbao, et al. "First results from the multichannel interferometer system on

HSX." Review of scientific instruments 74.3 (2003): 1625-1628.

[32] S. Kobayashi, T. Mizuuchi, Y. Nakashima, K. Nagasaki, H. Okada, T. Minami, S.

Kado, S. Yamamoto, S. Ohshima, H. Y. Lee et al., 40th EPS Conference on Plasma

Physics (2013).

[33] T. Mizuuchi, H.Y. Lee, K. Mukai, K. Yamamoto, S. Kobayashi, H. Okada, S.

Yamamoto, S. Ohshima, L. Zang, K. Nagasaki et al., Journal of Nuclear Materials 438

(2013).

[34]Y. Ohtani, S. Ohshima, N. Asavathavornvanit, T. Akiyama, T. Minami, K. Tanaka, K.

Nagasaki, N. Shi, T. Mizuuchi, N. B. Marushchenko et al., Plasma Fusion Res. 10,

1402091 (2015).

[35] Motojima, G., et al. "High-density experiments with hydrogen ice pellet injection

and analysis of pellet penetration depth in Heliotron J." Plasma Physics and Controlled

Fusion 61.7 (2019): 075014.

[36] Zhou, Y., et al. "Multi-channel far-infrared HL-2A interferometerpolarimeter." Review of Scientific Instruments 83.10 (2012): 10E336.

[37] Zhou, Y., et al. "A new multichannel interferometer system on HL-2A." Review of

Scientific Instruments 78.11 (2007): 113503.

[38] D. Veron, Infrared and Millimeter Wave (Academic Press, New York), Vol. 2 (1979).

[39] Li, J., et al. "Development and preliminary experimental results of a high-temporalresolution

terahertz

solid-source

interferometer

on

EAST." Journal

of

Instrumentation 15.02 (2020): C02048.

[40] Y. Ohtani. ヘリカル型閉じ込め装置におけるイオン種の違いが粒子輸送に与

える影響に関する研究. PhD thesis, Kyoto University, Kyoto, 2017.

[41] Kim, Sung K., et al. "High‐resolution multichannel interferometric measurement of

sawtooth density‐pulse propagation." Review of Scientific Instruments 59.8 (1988):

1550-1555.

[42] Kawahata, K., et al. "Far infrared laser interferometer system on the Large Helical

Device." Review of scientific instruments 70.1 (1999): 707-709.

[43] D. L. Brower, C. Deng, W. X. Ding D. T. Anderson, W. Mason, Rev. Sci. Instrum.

72, 1081 (2001).

129

[44] Obiki, T., et al. "First plasmas in Heliotron J." Nuclear fusion 41.7 (2001): 833.

[45] Obiki, T., et al. "Goals and status of Heliotron J." Plasma Physics and Controlled

Fusion 42.11 (2000): 1151.

[46] Nagasaki, K., et al. "Stabilization of energetic-ion-driven MHD modes by ECCD in

Heliotron J." Nuclear Fusion 53.11 (2013): 113041.

[47] Sano, Fumimichi, et al. "Physics of Heliotron J confinement." Plasma and Fusion

Research 5 (2010): S2003-S2003.

[48] Wakatani, M., et al. "Study of a helical axis heliotron." Nuclear fusion 40.3Y (2000):

569.

[49] Kobayashi, S., et al. "Fast‐Ion Response to Energetic‐Particle‐Driven MHD Activity

in Heliotron J." Contributions to Plasma Physics 50.6‐7 (2010): 534-539.

[50] Nagasaki, K., et al. "Heliotron J Experiments"J. Plasma Fusion Res. Vol.96, No.9

(2020)475-518.

[51] Matoike, R. ヘリオトロン J3 次元磁場における周辺プラズマ輸送およびダイ

バータ熱負荷に関する研究. PhD thesis, Kyoto University, Kyoto, 2022.

[52] Mizuuchi, T., S. Kobayashi, and T. Minami. A new operation regime for highdensity plasma in Heliotron J. No. NIFS--1121. National Inst. for Fusion Science, 2014.

[53] Nagasaki, K., et al. "ECCD Experiments Using the Upgraded Launching System in

Heliotron J." Contributions to Plasma Physics 50.6‐7 (2010): 656-660.

[54] Okada, Hiroyuki, et al. "Formation and confinement of high-energy ions in heliotron

J." Fusion science and technology 50.2 (2006): 287-293.

[55] Motojima, G., et al. "High-density experiments with hydrogen ice pellet injection

and analysis of pellet penetration depth in Heliotron J." Plasma Physics and Controlled

Fusion 61.7 (2019): 075014.

[56] Mizuuchi, T., et al. "Effects of Supersonic Molecular Beam Injection (SMBI) on

plasma performance in heliotron J." Contributions to Plasma Physics 50.6‐7 (2010): 639645.

[57] Yao, Lianghua, et al. "Plasma behaviour with hydrogen supersonic molecular beam

and cluster jet injection in the HL-2A tokamak." Nuclear fusion 47.11 (2007): 1399.

[58] Mizuuchi, T., et al. "Gas fueling effect on plasma profile in Heliotron J." Journal of

Nuclear Materials 438 (2013): S453-S458.

[59] Luo, Maoyuan, et al. "Measurement of Electron Temperature Profile and Fluctuation

with ECE Radiometer System in Heliotron J." Plasma and Fusion Research 15 (2020):

2402038-2402038.

[60] Kenmochi, N., et al. "First measurement of time evolution of electron temperature

profiles with Nd: YAG Thomson scattering system on Heliotron J." Review of Scientific

Instruments 85.11 (2014): 11D819.

[61] Minami, Takashi, et al. "Design of a new high repetition rate Nd: YAG Thomson

scattering system for Heliotron J." Review of Scientific Instruments 81.10 (2010):

10D532.

[62] Besshou, S., et al. "Diamagnetic double-loop method for a highly sensitive

measurement of energy stored in a Stellarator plasma." Review of Scientific Instruments

130

72.10 (2001): 3859-3863.

[63] Watanabe, S., et al. Measurement of radiation profile at density ramp-up phase by

using AXUV photodiode arrays in Heliotron J. No. NIFS-PROC--69-V2. 2008.

[64] Watanabe, S., et al. Radiation measurement in Heliotron J by using an AXUV

photodiode array with multiple optical filters. No. NIFS-PROC--78. 2009.

[65] M. Takeda. ヘリオトロン J プラズマにおける電子密度制御. Master thesis,

Kyoto University, Kyoto, 2002.

[66] H. Kume.ヘリオトロン J における高密度プラズマ計測用 320GHz 多視線干

渉計の開発. Master thesis, Kyoto University, Kyoto, 2020.

[67] Ohshima, S., et al. "Development of a multi-channel 320 GHz interferometer for

high density plasma measurement in Heliotron J." Review of Scientific Instruments 92.5

(2021): 053519.

[68] Zhang, P., et al. "Development and initial results of 320 GHz interferometer system

in Heliotron J." Review of Scientific Instruments 93.11 (2022): 113519.

[69] Goldsmith, Paul F. Quasioptical systems. New York, NY, USA: Chapman & Hall,

1998.

[70] Goldsmith, Paul F. "Quasi-optical techniques." Proceedings of the IEEE 80.11

(1992): 1729-1747.

[71] Kogelnik, Herwig, and Tingye Li. "Laser beams and resonators." Applied optics

5.10 (1966): 1550-1567.

[72] Crenn, J. P. "Optical study of the EH 11 mode in a hollow circular oversized

waveguide and Gaussian approximation of the far-field pattern." Applied optics 23.19

(1984): 3428-3433.

[73] Crenn, J. P. "Optical theory of Gaussian beam transmission through a hollow

circular dielectric waveguide." Applied Optics 21.24 (1982): 4533-4541.

[74] H. Zhao. Design and construction of 320 GHz interferometer for electron density

measurement in Heliotron J. Master thesis, Kyoto University, Kyoto, 2023.

[75] Ahmed, Rajib, et al. RSC advances 7.41 (2017): 25657-25664.

[76] Zhou L, Kahn J M, Pister K S J. Journal of microelectromechanical systems, 12(3):

233-242(2003).

[77] S. Wang, T. Sherlock, B. Salazar, N. Sudheendran,R. K. Manapuram, K.Kourentzi,

P. Ruchhoe, IEEER. C. Willson and K. V. Larin, IEEE Sens. J., 2013, 13, 4534 –4541.

[78] Zhong-Ping Zhang, Hai-Feng Zhang, Wan-Zhen Chen ,Pu Li, Wen-Dong Meng ,

Yuan-Ming Wang, Jie Wang, Wei Hu, Fu-Min Yang, Advances in Space Research. 54,

(5), 811-817(2014).

[79] Konan Peck; Michael D. Morris, Rev Sci Instrum 58, 189–196 (1987).

[80] Eckhardt, H. D. Applied Optics 10.7 (1971): 1559-1566.

131

[81] Hiroyuki Ichikawa, J. Opt. A: Pure Appl. Opt. 6,S121–S127, (2004).

[82] R. Imazawa, Y. Kawano, T. Ono, Y. Kusama., Rev Sci Instrum 82, 023116 (2011).

[83] Ryota Imazawa, Yasunori Kawano, Takehiro Ono, Yoshinori Kusama., Plasma and

Fusion Res. 6, 02402032 (2011).

[84] Christopher Palmer, DIFFRACTION GRATING HANDBOOK. Sixth

edition(2005).

[85] ERWIH 6. LOEWEH, Diffraction gratings and applications. (1997).

[86] Pozar, David M. Microwave engineering. John wiley & sons, Fourth edition (2011).

[87] Hansen, R. C., and W. T. Pawlewicz. IEEE Transactions on Microwave Theory and

Techniques 30.11: 2064-2066 (1982).

[88] K. Nagasaki, S. Kobayashi, K. Sakamoto, H. Zushi, T. Obiki, K. Ohkubo, M.

Kawaguchi, G G. Denisov, A L. Goldenberg, V I. Kurbatov et al., Fusion technology,

32.2: 287-295 (1997).

[89] Zhang. P., et al. "Characterization of a retroreflector array for 320-GHz

interferometer system in Heliotron J." Review of Scientific Instruments 94.9 (2023).

[90] R. Matoike, G. Kawamura, S. Ohshima, M. Kobayashi, Y. Suzuki, K. Nagasaki, S.

Masuzaki, S. Kobayashi, S. Yamamoto, S. Kado et al., Plasma Fusion Res. 3403127

(2019).

[91] S. Yamamoto, K. Nagasaki, K. Nagaoka, J. Varela, A. Cappa, E. Ascasíbar, F.

Castej´on, J.M. Fontdecaba, J.M. García-Regaña, A. Gonz´alez-Jerez et al., Nucl. Fusion

60, 066018 (2020).

[92] S. Ohshima, S. Kobayashi, S. Yamamoto, K. Nagasaki, T. Mizuuchi, H. Okada, T.

Minami, K. Hashimoto, N. Shi, L. Zang et al., Nucl. Fusion 56 (2016) 016009.

[93] SAKAI, Hikona, et al. "Application of Digital Phase Analysis to Far-Infrared Laser

Interferometer for the Large Helical Device." Plasma and Fusion Research 18 (2023):

1402062-1402062.

132

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る