リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Aging is only significant factor causing CPR-induced injuries and serious injuries.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Aging is only significant factor causing CPR-induced injuries and serious injuries.

MORIGUCHI Shingo HAMANAKA Kunio 0000-0001-9631-7472 NAKAMURA Mami 70753763 TAKASO Marin BABA Mineko HITOSUGI Masahito 90328352 0000-0001-5243-8766 滋賀医科大学

2020.12.11

概要

Background:
Cardiopulmonary resuscitation (CPR) sometime cause severe injuries and can affect quality of life, lead to long-term disabilities or death of the patient. The aim of this study is to identify the risk factors causing CPR-induced injuries and those of serious injuries.
Methods:This was a retrospective forensic autopsy study in a single institution. Among 885 forensic autopsies undertaken between 2011 and 2018, those in which the victim had undergone CPR immediately after cardiac arrest were recorded. 'Serious injuries' were defined as an Abbreviated Injury Scale (AIS) score ≥ 3. CPR-induced injuries were evaluated by three experienced forensic pathologists. With the background and history of the patient, the circumstances of cardiac arrest and risks of causing CPR-induced injuries were determined by multivariate analyses.
Results:
Seventy-five victims comprised the study cohort. CPR-induced injuries were found in 52 victims (69.3%). Rib fracture was the most common (60.0%), followed by sternal fracture (37.3%), heart injury (21.3%) and liver injury (8.0%). Multivariate analysis revealed higher age to be an independent factor causing CPR-induced injuries (odds ratio [OR], 1.07, P < 0.001). Thirty-six victims had 39 serious injuries in the chest or abdomen: fracture of ≥ 3 ribs (35 cases), aortic dissection (two), lung contusion (one) and rupture of the heart (one). Multivariate analysis revealed higher age to be an independent factor causing CPR-induced serious injuries (OR, 1.09; P < 0.001).
Conclusion:
Aging was the significant factor causing CPR-induced injuries and serious injuries.

参考文献

[1] Neumar RW, Shuster M, Callaway CW, Gent LM, Atkins DL, Bhanji F, Brooks SC,

de Caen AR, Donnino MW, Ferrer JME, Kleinman ME, Kronick SL, Lavonas EJ,

Link MS, Mancini ME, Morrison LJ, O’Connor RE, Samson RA, Schexnayder SM,

17

Singletary EM, Sinz EH, Travers AH, Wyckoff MH, Hazinski MF, Part 1:

Executive Summary: 2015 American Heart Association Guidelines Update for

Cardiopulmonary Resuscitation and Emergency Cardiovascular Care, Circulation.

132 (2015) 315-367. https://doi.org/10.1161/CIR.0000000000000252.

[2] Ram P, Menezes RG, Sirinvaravong N, Luis SA, Hussain SA, Madadin M, Lasrado

S, Eiger G, Breaking your heart-A review on CPR-related injuries, Am J Emerg

Med. 36 (2018) 838-842. https://doi.org/10.1016/j.ajem.2017.12.063.

[3] Krischer JP, Fine EG, Davis JH, Nagal EL, Complications of cardiac resuscitation,

Chest. 92 (1987) 287-291. https://doi.org/10.1378/chest.92.2.287.

[4] Hoke RB, Chamberlain D, Skeletal chest injuries secondary to cardiopulmonary

resuscitation, Resuscitation. 63 (2004) 327-338.

https://doi.org/10.1016/j.resuscitation.2004.05.019.

[5] Baubin M, Rabl W, Preiffer K.P, Benzer A, Gilly H, Chest injuries after active

compression-decompression cardiopulmonary resuscitation (ACD-CPR) in

cadavers, Resuscitation. 43 (1999) 9-15.

https://doi.org/10.1016/S0300-

9572(99)00110-0.

[6] Setälä P, Hellevuo H, Huhtala H, Kämäräinen A, Tirkkonen J, Hoppu S, Risk

Factors for Cardiopulmonary Resuscitation-Related Injuries Sustained During Out-

18

Of-Hospital Cardiac Arrests, Acta Anaesthesiol Scand. 62 (2018) 1290-1296.

https://doi.org/10.1111/aas.13155.

[7] Kaldırım U, Toygar M, Karbeyaz K, Arzıman I, Tuncer SK, Eyi YE, Eroglu M,

Complications of cardiopulmonary resuscitation in non-traumatic cases and factors

affecting complications, Egypt J Forensic Sci. 6 (2016) 270-274.

https://doi.org/10.1016/j.ejfs.2015.07.005.

[8] Rudinská LI, Hejna P, Ihnát P, Tomášková H, Smatanová M, Dvořáček I, Intrathoracic injuries associated with cardiopulmonary resuscitation - frequent and

serious, Resuscitation. 103 (2016) 66-70.

https://doi.org/10.1016/j.resuscitation.2016.04.002.

[9] Smekal D, Lindgren E, Sandler H, Johansson J, Rubertsson S, CPR-related injuries

after manual or mechanical chest compressions with the LUCAS

TM

device: a

multicentre study of victims after unsuccessful resuscitation, Resuscitation. 85

(2014) 1708–1712. https://doi.org/10.1016/j.resuscitation.2014.09.017.

[10]

Hellevuo H, Sainio M, Nevalainen R, Huhtala H, Olkkola KT, Tenhunen J,

Hoppu S, Deeper chest compression – More complications for cardiac arrest

patients? Resuscitation. 84 (2013) 760-765.

https://doi.org/10.1016/j.resuscitation.2013.02.015.

19

[11]

Yamaguchi R, Makino Y, Chiba F, Torimitsu S, Yajima D, Inokuchi G,

Motomura A, Hashimoto M, Hoshioka Y, Shinozaki T, Iwase H, Frequency and

influencing factors of cardiopulmonary resuscitation-related injuries during

implementation of the American Heart Association 2010 Guidelines: a retrospective

study based on autopsy and postmortem computed tomography, Int J Legal Med.

131 (2017) 1655-1663. https://doi.org/10.1007/s00414-017-1673-8.

[12]

Kralj E, Podbregar M, Kejžar N, Balažic J, Frequency and number of

resuscitation related rib and sternum fractures are higher than generally considered,

Resuscitation. 93 (2015) 136-141.

https://doi.org/10.1016/j.resuscitation.2015.02.034.

[13]

Pinto DC, Pinneri KH, Love JC, Manual and automated cardiopulmonary

resuscitation (CPR): a comparison of associated injury patterns, J Forensic Sci. 58

(2013) 904-909. https://doi.org/10.1111/1556-4029.12146.

[14]

Ondruschka B, Baier C, Bayer R, Hammer N, Dreßler J, Bernhard M, Chest

compression-associated injuries in cardiac arrest patients treated with manual chest

compressions versus automated chest compression devices (LUCAS II) - a forensic

autopsy-based comparison, Forensic Sci Med Pathol. 14 (2018) 515–525.

http://doi.org/10.1007/s12024-018-0024-5.

20

[15]

Milling L, Astrup BS, Mikkelsen S, Prehospital cardiopulmonary resuscitation

with manual or mechanical chest compression: a study of compression-induced

injuries, Acta Anaesthesiol Scand. 63 (2019) 789-795.

https://doi.org/10.1111/aas.13347.

[16]

Black CJ, Busuttil A, Robertson C, Chest wall injuries following

cardiopulmonary resuscitation, Resuscitation. 63 (2004) 339-343.

https://doi.org/10.1016/j.resuscitation.2004.07.005.

[17]

Association for the Advancement of Automotive Medicine, THE

ABBREVIATED INJURY SCALE 1990 Revision. Des Plaines, IL; Association for

the Advancement of Automotive Medicine, 1990, 2.

[18]

Chrysou K, Halat G, Hoksch B, Schmid RA, Kocher GJ, Lessons from a large

trauma center: impact of blunt chest trauma in polytrauma patients-still a relevant

problem?, Scand J Trauma Resusc Emerg Med. 25 (2017) 42.

https://doi.org/10.1186/s13049-017-0384-y.

[19]

Bankhead-kendall B, Radpour S, Luftman K, Guerra E, Ali S, Getto C, Brown

CVR, Rib Fractures and Mortality: Breaking the Causal Relationship. 85 (2019)

1224-1227. https://doi.org/10.1177/000313481908501127.

[20]

Beom JH, You JS, Kim MJ, Seung MK, Park YS, Chung HS, Chung SP, Park I,

21

Investigation of complications secondary to chest compressions before and after the

2010 cardiopulmonary resuscitation guideline changes by using multi-detector

computed tomography: a retrospective study, Scand J Trauma Resusc Emerg Med.

25 (1) (2017) 8. https://doi.org/10.1186/s13049-017-0352-6.

[21]

Seung MK, You JS, Lee HS, Park YS, Chung SP, Park I, Comparison of

complications secondary to cardiopulmonary resuscitation between out-of-hospital

cardiac arrest and in-hospital cardiac arrest, Resuscitation. 98 (2016) 64-72.

https://doi.org/10.1016/j.resuscitation.2015.11.004.

[22]

Kashiwagi Y, Sasakawa T, Tampo A, Kawata D, Nishiura T, Kokita N, Iwasaki

H, Fujita S, Computed tomography findings of complications resulting from

cardiopulmonary resuscitation, Resuscitation. 88 (2015) 86-91.

https://doi.org/10.1016/j.resuscitation.2014.12.022.

[23]

Agnew AM, Schafman M, Moorhouse K, White SE, Kang YS, The effect of age

on the structural properties of human ribs, J Mech Behav Biomed Mater. 41 (2015)

302-314. https://doi.org/10.1016/j.jmbbm.2014.09.002.

[24]

JP Janssens, JC Pache, LP Nicod, Physiological changes in respiratory function

associated with ageing, Eur Respir J. 13 (1999) 197-205.

https://doi.org/10.1034/j.1399-3003.1999.13a36.x.

22

Table 1. Background of the study victims

Parameter

Age (years, mean ± SD)

Gender

Male

Female

BMI (kg/m2, mean ± SD)

CPR duration

< 30 min

30-59 min

60-89 min

≧ 90 min

Location of the cardiac arrest

Home

Others

Using anticoagulants

Using antiosteoporosis medicines

n (%)

59.4 ± 21.7

57 (76.0)

18 (24.0)

23.0 ± 4.3

0 (0)

14 (18.7)

22 (29.3)

15 (20)

25 (33.3)

50 (66.7)

7 (9.3)

4 (5.3)

3 (4.0)

Kyphosis

Type of chest compression

Mechanical chest compression

10 (13.3)

Manual chest compression

65 (86.7)

11 (14.7)

Transient ROSC

Cause of death

Disease

40 (53.3)

External

35 (46.7)

BMI: body mass index, CPR: cardiopulmonary resuscitation, ROSC: return of spontaneous circulation

Table2 . Comparison with and without ROSC cases

Parameter

ROSC(+)

n (%)

ROSC(-)

n (%)

P-value

Age (years, mean ± SD)

58.0 ± 20.3

59.6 ± 21.7

0.82

0.30

Gender

Male

7 (63.6)

50 (78.1)

Female

4 (36.4)

14 (21.9)

22.5 ± 5.4

22.6 ± 4.1

BMI (kg/m2, mean ± SD)

0.97

0.93

CPR duration

< 30min

0 (0)

0 (0)

30-59min

1 (9.1)

13 (20.3)

60-89min

1 (9.1)

21 (32.8)

≧ 90min

1 (9.1)

14 (21.9)

0.81

Location of the cardiac arrest

Home

4 (36.4)

21(32.8)

Others

7 (63.6)

43 (67.2)

Using anticoagulants

0 (0)

7 (10.9)

0.07

Using antiosteoporosis medicines

0 (0)

4 (6.2)

0.17

Kyphosis

0 (0)

3 (4.7)

0.24

0.65

Type of chest compression

Mechanical chest compression

Manual chest compression

1 (9.1)

9 (14.1)

10 (90.9)

55 (85.9)

0.22

Cause of death

Disease

4 (36.4)

36 (56.3)

External

7 (63.6)

28 (43.7)

0.09

MAIS

1(9.1)

22(34.4)

1(9.1)

4(6.2)

2(18.2)

9(14.1)

6(54.5)

28(43.7)

0(0)

1(1.6)

1(9.1)

0(0)

BMI: body mass index, CPR: cardiopulmonary resuscitation, ROSC: return of spontaneous circulation,

MAIS: Maximum Abbreviated Injury Scale score

Table 3. Distribution of the CPR-induced injuries (except for skin injurries)

Injury

Rib fractures

n (%)

45 (60.0)

≦3

35 (46.7)

<3

10 (13.3)

Sternal fractures

28 (37.3)

Lung contusion

2 (2.7)

Mediastinal haematoma

4 (2.7)

Aortic injury

4 (5.3)

Aortic dissection

Adventitial injury

Heart injury

Myocardial contusion

2 (2.7)

2 (2.7)

16 (21.3)

12 (16.0)

Rupture of heart

1 (1.3)

Endocardial injury

1 (1.3)

Epicardial injury

2 (2.7)

Liver injury

6 (8.0)

Table 4. Comparison of the backgrounds of the victims between having CPR-induced injuries and not

Parameter

Age (years, mean ± SD)

Injuries

n (%)

No injuries

n (%)

P-value

67.8 ± 15.7

40.4 ± 21.5

< 0.001

< 0.001

Gender

Male

34 (65.4)

23 (100)

Female

18 (34.6)

0 (0)

22.3 ± 4.4

23.1 ± 4.1

BMI (kg/m2, mean ± SD)

0.46

0.63

CPR duration

< 30min

0 (0)

0 (0)

30-59min

12 (23.1)

2 (8.7)

60-89min

16 (30.8)

6 (26.1)

≧ 90min

11 (21.2)

4 (17.4)

0.72

Location of the cardiac arrest

Home

18 (34.6)

7 (30.4)

Others

34 (65.4)

16 (69.6)

Using anticoagulants

7 (13.5)

0 (0)

0.07

Using antiosteoporosis medicines

4 (7.7)

0 (0)

0.17

Kyphosis

3 (5.8)

0 (0)

0.24

0.96

Type of chest compression

Mechanical chest compression

7 (13.5)

3 (13.0)

Manual chest compression

45 (86.5)

20 (87.0)

10 (19.2)

1 (4.3)

Transient ROSC

0.09

0.70

Cause of death

Disease

26 (50.0)

14 (60.9)

External

26 (50.0)

9 (39.1)

BMI: body mass index, CPR: cardiopulmonary resuscitation, ROSC: return of spontaneous circulation

Table 5. Result of the multivariable logistic regression analysis for CPR-induced injuries as a dependent variable

Parameter

Odds ratio

95% Confidence interval

P-value

Age

1.07

1.03-1.11

< 0.001

Gender

> 100

0.99

Using anticoagulants

> 100

0.99

Transient ROSC

13.63

0.96-193.38

0.05

ROSC: return of spontaneous circulation

Table 6. Comparison of the backgrounds of the victims between having CPR-induced serious injuries or not

AIS3 ≧

AIS2 ≦

Parameter

P-value

n (%)

n (%)

Age (years, mean ± SD)

73.3 ± 10.9

46.5 ± 21.2

< 0.001

0.004

Gender

Male

Female

BMI (kg/m , mean ± SD)

22 (61.1)

35 (89.7)

14 (38.9)

4 (10.3)

22.0 ± 4.6

23.1 ± 4.0

0.30

0.61

CPR duration

< 30min

0 (0)

0 (0)

30-59min

9 (25.0)

5 (12.8)

60-89min

13 (36.1)

9 (23.1)

≧ 90min

7 (19.4)

8 (20.5)

0.05

Location

Home

16 (44.4)

9 (23.1)

Others

20 (55.6)

30 (76.9)

Using anticoagulants

6 (16.7)

1 (2.6)

0.04

Using antiosteoporosis medicines

4 (11.1)

0 (0)

0.03

Kyphosis

3 (8.3)

0 (0)

0.07

0.89

Type of chest cpmression

Mechanical chest compression

5 (13.9)

5 (12.8)

Manual chest compression

31 (86.1)

34 (87.2)

7 (19.4)

4 (10.3)

Transient ROSC

0.26

0.63

Cause of death

Desease

20 (55.6)

20 (51.3)

External

16 ( 44.4)

19 (48.7 )

AIS: Abbreviated Injury Scale score, BMI: body mass index, CPR: cardiopulmonary resuscitation, ROSC: return of

spontaneous circulation

Table 7. Result of a multivariable logistic regression analysis for CPR-induced serious injuries as a dependent variable

Parameter

Odds ratio

95% Confidence interval

P-value

Age

1.09

1.04-1.13

< 0.001

Gender

1.85

0.37-9.30

0.45

Location

0.26

0.06-1.19

0.08

Using anticoagulants

1.96

0.16-24.21

0.60

Using antiosteoporosis medicines

> 100

0.99

Kyphosis

> 100

0.99

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る