リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cell-to-cell contact-mediated regulation of tumor behavior in the tumor microenvironment.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cell-to-cell contact-mediated regulation of tumor behavior in the tumor microenvironment.

SATO Akira 70464302 RAHMAN Nor Idayu A. SHIMIZU Akio 30769279 0000-0002-3393-6193 扇田 久和 50379236 0000-0001-6750-1668 滋賀医科大学

2021.08.22

概要

Tumor growth and progression are complex processes mediated by mutual interactions between cancer cells and their surrounding stroma that include diverse cell types and acellular components, which form the tumor microenvironment. In this environment, direct intercellular communications play important roles in the regulation of the biological behaviors of tumors. However, the underlying molecular mechanisms are insufficiently defined. We used an in vitro coculture system to identify genes that were specifically expressed at higher levels in cancer cells associated with stromal cells. Major examples included epithelial membrane protein 1 (EMP1) and stomatin, which positively and negatively regulate tumor progression, respectively. EMP1 promotes tumor cell migration and metastasis via activation of the small GTPase Rac1, while stomatin strongly suppresses cell proliferation and induces apoptosis of cancer cells via inhibition of Akt signaling. Here we highlight important aspects of EMP1, stomatin, and their family members in cancer biology. Furthermore, we consider the molecules that participate in intercellular communications and signaling transduction between cancer cells and stromal cells, which may affect the phenotypes of cancer cells in the tumor microenvironment.

この論文で使われている画像

参考文献

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-­674.

2. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment

at a glance. J Cell Sci. 2012;125:5591-­5596.

3. Alkasalias T, Moyano-­Galceran L, Arsenian-­Henriksson M, Lehti K.

Fibroblasts in the tumor microenvironment: shield or spear? Int J

Mol Sci. 2018;19:1532.

4. Wang Z, Yang Q, Tan Y, et al. Cancer-­associated fibroblasts suppress cancer development: the other side of the coin. Front Cell Dev

Biol. 2021;9: 613534.

5. Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin

remodeler plasticity in mesenchymal stromal cell function. FASEB J.

2021;35:e21234.

6. Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY. Anatomic

demarcation by positional variation in fibroblast gene expression

programs. PLoS Genet. 2006;2:e119.

7. Adekoya TO, Richardson RM. Cytokines and chemokines as mediators of prostate cancer metastasis. Int J Mol Sci. 2020;21:4449.

8. Dominiak A, Chełstowska B, Olejarz W, Nowicka G. Communication

in the cancer microenvironment as a target for therapeutic interventions. Cancers (Basel). 2020;12:1232.

9. Ahmat Amin MKB, Shimizu A, Zankov DP, et al. Epithelial membrane protein 1 promotes tumor metastasis by enhancing cell migration via copine-­III and Rac1. Oncogene. 2018;37:5416-­5434.

10. Rahman NIA, Sato A, Tsevelnorov K, et al. Stomatin-­mediated inhibition of the Akt Signaling axis suppresses tumor growth. Cancer

Res. 2021;81:2318-­2331.

11. Wilson HL, Wilson SA, Surprenant A, North RA. Epithelial membrane proteins induce membrane blebbing and interact with the

P2X7 receptor C terminus. J Biol Chem. 2002;277:34017-­3 4023.

12. Li ZY, Xiong SH, Hu M, Zhang CS. Epithelial membrane protein

1 inhibits human spinal chondrocyte differentiation. Anat Rec

(Hoboken). 2011;294:1015-­1024.

13. Ashki N, Gordon L, Wadehra M. Review of the GAS3 family of proteins and their relevance to cancer. Crit Rev Oncog. 2015;20:435-­4 47.

14. Ahmat Amin MKB, Shimizu A, Ogita H. The pivotal roles of the epithelial membrane protein family in cancer invasiveness and metastasis. Cancers (Basel). 2019;11:1620.

15. Heinrich C, Keller C, Boulay A, et al. Copine-­III interacts with ErbB2

and promotes tumor cell migration. Oncogene. 2010;29:1598-­1610.

16. Shimazaki K, Lepin EJ, Wei B, et al. Diabodies targeting epithelial

membrane protein 2 reduce tumorigenicity of human endometrial

cancer cell lines. Clin Cancer Res. 2008;14:7367-­7377.

17. Sun GG, Wang YD, Cui DW, Cheng YJ, Hu WN. EMP1 regulates

caspase-­9 and VEGFC expression and suppresses prostate cancer

cell proliferation and invasion. Tumour Biol. 2014;35:3455-­3 462.

18. Echevarria MI, Awasthi S, Cheng CH, et al. African American specific gene panel predictive of poor prostate cancer outcome. J Urol.

2019;202:247-­255.

19. Turashvili G, Bouchal J, Baumforth K, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas

by laser microdissection and microarray analysis. BMC Cancer.

2007;7:55.

20. Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome.

Breast Cancer Res. 2004;6:R149-­R156.

21. Sun GG, Wang YD, Lu YF, Hu WN. EMP1, a member of a new

family of antiproliferative genes in breast carcinoma. Tumour Biol.

2014;35:3347-­3354.

22. Miao L, Jiang Z, Wang J, et al. Epithelial membrane protein 1 promotes glioblastoma progression through the PI3K/AKT/mTOR signaling pathway. Oncol Rep. 2019;42:605-­614.

23. Lapatsina L, Brand J, Poole K, Daumke O, Lewin GR. Stomatin-­

domain proteins. Eur J Cell Biol. 2012;91:240-­245.

24. Browman DT, Hoegg MB, Robbins SM. The SPFH domain-­

containing proteins: more than lipid raft markers. Trends Cell Biol.

2007;17:394-­4 02.

25. Wang D, Tabti R, Elderwish S, et al. SFPH proteins as therapeutic targets for a myriad of diseases. Bioorg Med Chem Lett.

2020;30:127600.

26. Stewart GW. Stomatin. Int J Biochem Cell Biol. 1997;29:271-­274.

27. Zhu Y, Paszty C, Turetsky T, et al. Stomatocytosis is absent in “stomatin”-­

deficient murine red blood cells. Blood.

1999;93:2404-­2410.

28. Genetet S, Desrames A, Chouali Y, Ripoche P, Lopez C, Mouro-­

Chanteloup I. Stomatin modulates the activity of the Anion

Exchanger 1 (AE1, SLC4A1). Sci Rep. 2017;7:46170.

29. Rungaldier S, Oberwagner W, Salzer U, Csaszar E, Prohaska R.

Stomatin interacts with GLUT1/SLC2A1, band 3/SLC4A1, and

aquaporin-­1 in human erythrocyte membrane domains. Biochim

Biophys Acta. 2013;1828:956-­966.

3 0. Brand J, Smith ES, Schwefel D, et al. A stomatin dimer modulates the

activity of acid-­sensing ion channels. EMBO J. 2012;31:3635-­3646.

31. Chen JC, Cai HY, Wang Y, et al. Up-­regulation of stomatin expression by hypoxia and glucocorticoid stabilizes membrane-­associated

actin in alveolar epithelial cells. J Cell Mol Med. 2013;17:863-­872.

32. Snyers L, Thinès-­Sempoux D, Prohaska R. Colocalization of stomatin (band 7.2b) and actin microfilaments in UAC epithelial cells. Eur J

Cell Biol. 1997;73:281-­285.

33. Lee JH, Hsieh CF, Liu HW, et al. Lipid raft-­associated stomatin enhances cell fusion. FASEB J. 2017;31:47-­59.

3 4. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in

cancer. Front Oncol. 2014;4:64.

35. Fujita N, Sato S, Ishida A, Tsuruo T. Involvement of Hsp90 in signaling and stability of 3-­phosphoinositide-­dependent kinase-­1. J Biol

Chem. 2002;277:10346-­10353.

36. Chen CY, Yang CY, Chen YC, Shih CW, Lo SS, Lin CH. Decreased

expression of stomatin predicts poor prognosis in HER2-­positive

breast cancer. BMC Cancer. 2016;16:697.

37. An H, Ma X, Liu M, et al. Stomatin plays a suppressor role in non-­small

cell lung cancer metastasis. Chin J Cancer Res. 2019;31:930-­944.

38. Zhang L, Ding F, Cao W, et al. Stomatin-­like protein 2 is overexpressed in cancer and involved in regulating cell growth and cell adhesion in human esophageal squamous cell carcinoma. Clin Cancer

Res. 2006;12:1639-­1646.

39. Yang CT, Li JM, Li LF, Ko YS, Chen JT. Stomatin-­like protein 2 regulates survivin expression in non-­small cell lung cancer cells through

β-­c atenin signaling pathway. Cell Death Dis. 2018;9:425.

4 0. Zhou C, Li Y, Wang G, et al. Enhanced SLP-­2 promotes invasion

and metastasis by regulating Wnt/β-­

c atenin signal pathway in

colorectal cancer and predicts poor prognosis. Pathol Res Pract.

2019;215:57-­67.

41. Sun F, Ding W, He JH, Wang XJ, Ma ZB, Li YF. Stomatin-­like protein

2 is overexpressed in epithelial ovarian cancer and predicts poor

patient survival. BMC Cancer. 2015;15:746.

42. Yang J, Li B, He QY. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment.

Cell Death Dis. 2018;9:580.

43. Wang S, Nath N, Adlam M, Chellappan S. Prohibitin, a potential

tumor suppressor, interacts with RB and regulates E2F function.

Oncogene. 1999;18:3501-­3510.

8 4 4. Rajalingam K, Wunder C, Brinkmann V, et al. Prohibitin is required

for Ras-­induced Raf-­MEK-­ERK activation and epithelial cell migration. Nat Cell Biol. 2005;7:837-­8 43.

45. Gauthier-­Rouvière C, Bodin S, Comunale F, Planchon D.

Flotillin membrane domains in cancer. Cancer Metastasis Rev.

2020;39:361-­374.

46. Snyers L, Content J. Induction of metallothionein and stomatin by

interleukin-­6 and glucocorticoids in a human amniotic cell line. Eur J

Biochem. 1994;223:411-­418.

47. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat

Rev Immunol. 2017;17:233-­247.

4 8. Cook AM, McDonnell AM, Lake RA, Nowak AK. Dexamethasone

co-­

m edication in cancer patients undergoing chemotherapy

causes substantial immunomodulatory effects with implications for chemo-­

immunotherapy strategies. Oncoimmunology.

2016;5:e1066062.

49. Giehl K, Menke A. Microenvironmental regulation of E-­c adherin-­

mediated adherens junctions. Front Biosci. 2008;13:3975-­3985.

50. Niessen CM, Gottardi CJ. Molecular components of the adherens

junction. Biochim Biophys Acta. 2008;1778:562-­571.

51. Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-­like molecules: roles in contact inhibition of cell movement and proliferation.

Nat Rev Mol Cell Biol. 2008;9:603-­615.

52. Labernadie A, Kato T, Brugués A, et al. A mechanically active heterotypic E-­c adherin/N-­c adherin adhesion enables fibroblasts to

drive cancer cell invasion. Nat Cell Biol. 2017;19:224-­237.

53. Loh CY, Chai JY, Tang TF, et al. The E-­C adherin and N-­C adherin

switch in epithelial-­to-­mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8:1118.

54. Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in

tumor progression. Ann N Y Acad Sci. 2004;1014:155-­163.

55. McAndrews KM, Yi J, McGrail DJ, Dawson MR. Enhanced adhesion

of stromal cells to invasive cancer cells regulated by Cadherin 11.

ACS Chem Biol. 2015;10:1932-­1938.

56. Apostolopoulou M, Ligon L. Cadherin-­23 mediates heterotypic cell-­

cell adhesion between breast cancer epithelial cells and fibroblasts.

PLoS One. 2012;7:e33289.

57. Kaessmeyer S, Bhoola K, Baltic S, Thompson P, Plendl J. Lung

cancer neovascularisation: cellular and molecular interaction

between endothelial and lung cancer cells. Immunobiology.

2014;219:308-­314.

58. Delgado-­Bellido D, Serrano-­Saenz S, Fernández-­Cortés M, Oliver

FJ. Vasculogenic mimicry signaling revisited: focus on non-­vascular

VE-­c adherin. Mol Cancer. 2017;16:65.

59. Villanelo F, Escalona Y, Pareja-­Barrueto C, Garate JA, Skerrett IM,

Perez-­Acle T. Accessing gap-­junction channel structure-­function

relationships through molecular modeling and simulations. BMC Cell

Biol. 2017;18:5.

60. Aasen T, Leithe E, Graham SV, et al. Connexins in cancer: bridging

the gap to the clinic. Oncogene. 2019;38:4429-­4 451.

61. Saccheri F, Pozzi C, Avogadri F, et al. Bacteria-­induced gap junctions

in tumors favor antigen cross-­presentation and antitumor immunity. Sci Transl Med. 2010;2:44ra57.

62. Aucher A, Rudnicka D, Davis DM. MicroRNAs transfer from human

macrophages to hepato-­c arcinoma cells and inhibit proliferation. J

Immunol. 2013;191:6250-­6260.

63. Wang WK, Chen MC, Leong HF, Kuo YL, Kuo CY, Lee CH. Connexin

43 suppresses tumor angiogenesis by down-­regulation of vascular

endothelial growth factor via hypoxic-­induced factor-­1α. Int J Mol

Sci. 2014;16:439-­451.

6 4. Karpinich NO, Caron KM. Gap junction coupling is required for

tumor cell migration through lymphatic endothelium. Arterioscler

Thromb Vasc Biol. 2015;35:1147-­1155.

65. Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC.

Astrocytes promote glioma invasion via the gap junction protein

connexin43. Oncogene. 2016;35:1504-­1516.

SATO et al

66. Chen Q, Boire A, Jin X, et al. Carcinoma-­astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature.

2016;533:493-­498.

67. Pasquale EB. Eph-­ephrin bidirectional signaling in physiology and

disease. Cell. 2008;133:38-­52.

68. Cortina C, Palomo-­Ponce S, Iglesias M, et al. EphB-­ephrin-­B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet. 2007;39:1376-­1383.

69. Guo H, Miao H, Gerber L, et al. Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in

mouse skin. Cancer Res. 2006;66:7050-­7058.

70. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10:165-­180.

71. Lu H, Clauser KR, Tam WL, et al. A breast cancer stem cell niche

supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-­1117.

72. Meurette O, Mehlen P. Notch signaling in the tumor microenvironment. Cancer Cell. 2018;34:536-­548.

73. Sonoshita M, Aoki M, Fuwa H, et al. Suppression of colon cancer

metastasis by Aes through inhibition of Notch signaling. Cancer Cell.

2011;19:125-­137.

74. Zhu TS, Costello MA, Talsma CE, et al. Endothelial cells create a

stem cell niche in glioblastoma by providing NOTCH ligands

that nurture self-­

renewal of cancer stem-­

like cells. Cancer Res.

2011;71:6061-­6072.

75. Boelens MC, Wu TJ, Nabet BY, et al. Exosome transfer from stromal

to breast cancer cells regulates therapy resistance pathways. Cell.

2014;159:499-­513.

76. Choi JH, Park JT, Davidson B, Morin PJ, Shih IM, Wang TL. Jagged-­1

and Notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res. 2008;68:5716-­5723.

77. Han Y, Liu D, Li L. PD-­1/PD-­L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10:727-­742.

78. Liu S, Chen S, Yuan W, Wang H, Chen K, Li D. PD-­1/PD-­L1 interaction up-­

regulates MDR1/P-­

gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget.

2017;8:99901-­99912.

79. Roehlecke C, Schmidt MHH. Tunneling nanotubes and tumor microtubes in cancer. Cancers (Basel). 2020;12:857.

8 0. Hase K, Kimura S, Takatsu H, et al. M-­Sec promotes membrane

nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol. 2009;11:1427-­1432.

81. Hanna SJ, McCoy-­S imandle K, Leung E, Genna A, Condeelis

J, Cox D. Tunneling nanotubes, a novel mode of tumor cell-­

macrophage communication in tumor cell invasion. J Cell Sci.

2019;132:jcs223321.

82. Osswald M, Jung E, Sahm F, et al. Brain tumour cells interconnect to

a functional and resistant network. Nature. 2015;528:93-­98.

83. Sawanyawisuth K, Tantapotinan N, Wongkham C, et al. Suppression

of trophoblast cell surface antigen 2 enhances proliferation and migration in liver fluke-­associated cholangiocarcinoma. Ann Hepatol.

2016;15:71-­81.

8 4. Bowler MA, Bersi MR, Ryzhova LM, Jerrell RJ, Parekh A, Merryman

WD. Cadherin-­11 as a regulator of valve myofibroblast mechanobiology. Am J Physiol Heart Circ Physiol. 2018;315:H1614-­H1626.

How to cite this article: Sato A, Rahman NIA, Shimizu A,

Ogita H. Cell-­to-­cell contact-­mediated regulation of tumor

behavior in the tumor microenvironment. Cancer Sci.

2021;00:1–­8. https://doi.org/10.1111/cas.15114

...

参考文献をもっと見る