リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Prediction of Metabolic Flux Distribution by Flux Sampling: As a Case Study, Acetate Production from Glucose in Escherichia coli」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Prediction of Metabolic Flux Distribution by Flux Sampling: As a Case Study, Acetate Production from Glucose in Escherichia coli

Kuriya, Yuki Murata, Masahiro Yamamoto, Masaki Watanabe, Naoki Araki, Michihiro 神戸大学

2023.06

概要

Omics data was acquired, and the development and research of metabolic simulation and analysis methods using them were also actively carried out. However, it was a laborious task to acquire such data each time the medium composition, culture conditions, and target organism changed. Therefore, in this study, we aimed to extract and estimate important variables and necessary numbers for predicting metabolic flux distribution as the state of cell metabolism by flux sampling using a genome-scale metabolic model (GSM) and its analysis. Acetic acid production from glucose in Escherichia coli with GSM iJO1366 was used as a case study. Flux sampling obtained by OptGP using 1000 pattern constraints on substrate, product, and growth fluxes produced a wider sample than the default case. The analysis also suggested that the fluxes of iron ions, O₂, CO₂, and NH₄⁺, were important for predicting the metabolic flux distribution. Additionally, the comparison with the literature value of ¹³C-MFA using CO₂ emission flux as an example of an important flux suggested that the important flux obtained by this method was valid for the prediction of flux distribution. In this way, the method of this research was useful for extracting variables that were important for predicting flux distribution, and as a result, the possibility of contributing to the reduction of measurement variables in experiments was suggested.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

Bordbar, A.; Yurkovich, J.T.; Paglia, G.; Rolfsson, O.; Sigurjónsson, Ó.E.; Palsson, B.O. Elucidating dynamic metabolic physiology

through network integration of quantitative time-course metabolomics. Sci. Rep. 2017, 7, 46249. [CrossRef]

Beal, L.D.R.; Hill, D.C.; Martin, R.A.; Hedengren, J.D. GEKKO Optimization Suite. Processes 2018, 6, 106. [CrossRef]

Kamsen, R.; Kalapanulak, S.; Chiewchankaset, P.; Saithong, T. Transcriptome integrated metabolic modeling of carbon assimilation

underlying storage root development in cassava. Sci. Rep. 2021, 11, 8758. [CrossRef]

Di Filippo, M.; Pescini, D.; Galuzzi, B.G.; Bonanomi, M.; Gaglio, D.; Mangano, E.; Consolandi, C.; Alberghina, L.; Vanoni, M.;

Damiani, C. INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS

Comput. Biol. 2022, 18, e1009337. [CrossRef] [PubMed]

Zhao, J.; Shimizu, K. Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and

powerful flux calculation method. J. Biotechnol. 2003, 101, 101–117. [CrossRef] [PubMed]

Ishii, N.; Nakahigashi, K.; Baba, T.; Robert, M.; Soga, T.; Kanai, A.; Hirasawa, T.; Naba, M.; Hirai, K.; Hoque, A.; et al. Multiple

high-throughput analyses monitor the response of E. coli to perturbations. Science 2007, 316, 593–597. [CrossRef] [PubMed]

Toya, Y.; Ishii, N.; Nakahigashi, K.; Hirasawa, T.; Soga, T.; Tomita, M.; Shimizu, K. 13C-metabolic flux analysis for batch culture of

Escherichia coli and its Pyk and Pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites.

Biotechnol. Prog. 2010, 26, 975–992. [CrossRef]

Maeda, K.; Okahashi, N.; Toya, Y.; Matsuda, F.; Shimizu, H. Investigation of useful carbon tracers for 13C-metabolic flux analysis

of Escherichia coli by considering five experimentally determined flux distributions. Metab. Eng. Commun. 2016, 3, 187–195.

[CrossRef]

Bioengineering 2023, 10, 636

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

11 of 11

Okahashi, N.; Kajihata, S.; Furusawa, C.; Shimizu, H. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon

Metabolism Using Intracellular Free Amino Acids. Metabolites 2014, 4, 408–420. [CrossRef]

Crown, S.B.; Long, C.P.; Antoniewicz, M.R. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia

coli. Metab. Eng. 2015, 28, 151–158. [CrossRef]

Van Dien, S.; Iwatani, S.; Usuda, Y.; Matsui, K.; Ueda, T.; Tsuji, Y. Method for Determining Metabolic Flux Affecting Substance

Production. U.S. Patent 7,809,511 B2, 5 October 2010.

Klamt, S.; Schuster, S. Calculating as many fluxes as possible in underdetermined metabolic networks. Mol. Biol. Rep. 2002,

29, 243–248. [CrossRef]

Bogaerts, P.; Vande Wouwer, A. How to Tackle Underdeterminacy in Metabolic Flux Analysis? A Tutorial and Critical Review.

Processes 2021, 9, 1577. [CrossRef]

Fallahi, S.; Skaug, H.J.; Alendal, G. A comparison of Monte Carlo sampling methods for metabolic network models. PLoS ONE

2020, 15, e0235393. [CrossRef] [PubMed]

Kaufman, D.E.; Smith, R.L. Direction choice for accelerated convergence in hit-and-run sampling. Oper. Res. 1998, 46, 84–95.

[CrossRef]

Haraldsdottir, H.S.; Cousins, B.; Thiele, I.; Fleming, R.M.T.; Vempala, S. CHRR: Coordinate hit-and-run with rounding for uniform

sampling of constraint-based models. Bioinformatics 2017, 33, 1741–1743. [CrossRef] [PubMed]

Megchelenbrink, W.; Huynen, M.; Marchiori, E. optGpSampler: An improved tool for uniformly sampling the solution-space of

genome-scale metabolic networks. PLoS ONE 2014, 9, e86587. [CrossRef]

Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [CrossRef]

Burgard, A.P.; Vaidyaraman, S.; Maranas, C.D. Minimal reaction sets for Escherichia coli metabolism under different growth

requirements and uptake environments. Biotechnol. Prog. 2001, 17, 791–797. [CrossRef]

Herrmann, H.A.; Dyson, B.C.; Vass, L.; Johnson, G.N.; Schwartz, J.M. Flux sampling is a powerful tool to study metabolism under

changing environmental conditions. npj Syst. Biol. Appl. 2019, 5, 32. [CrossRef]

Scott, W.T.; Smid, E.J.; Block, D.E.; Notebaart, R.A. Metabolic flux sampling predicts strain-dependent differences related to aroma

production among commercial wine yeasts. Microb. Cell Fact. 2021, 20, 204. [CrossRef]

Orth, J.D.; Conrad, T.M.; Na, J.; Lerman, J.A.; Nam, H.; Feist, A.M.; Palsson, B.Ø. A comprehensive genome-scale reconstruction

of Escherichia coli metabolism—2011. Mol. Syst. Biol. 2011, 7, 535. [CrossRef]

Ebrahim, A.; Lerman, J.A.; Palsson, B.Ø.; Hyduke, D.R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python.

BMC Syst. Biol. 2013, 7, 74. [CrossRef]

Mugavin, M.E. Multidimensional scaling: A brief overview. Nurs. Res. 2008, 57, 64–68. [CrossRef] [PubMed]

Beyß, M.; Azzouzi, S.; Weitzel, M.; Wiechert, W.; Nöh, K. The Design of FluxML: A Universal Modeling Language for 13C

Metabolic Flux Analysis. Front. Microbiol. 2019, 10, 1022. [CrossRef] [PubMed]

Chalkis, A.; Fisikopoulos, V. Volesti: Volume Approximation and Sampling for Convex Polytopes in R. arXiv 2020,

arXiv:2007.01578. [CrossRef]

Chevallier, A.; Cazals, F.; Fearnhead, P. Efficient Computation of the Volume of a Polytope in High-Dimensions Using Piecewise

Deterministic Markov Processes. In Proceedings of the 25th International Conference on Artificial Intelligence and Statistics, Virtual, 28–30 March 2022; Volume 151, pp. 10146–10160. Available online: https://proceedings.mlr.press/v151/chevallier22a.html

(accessed on 12 April 2023).

Hubbard, J.A.; Lewandowska, K.B.; Hughes, M.N.; Poole, R.K. Effects of iron-limitation of Escherichia coli on growth, the

respiratory chains and gallium uptake. Arch. Microbiol. 1986, 146, 80–86. [CrossRef]

Pourciau, C.; Pannuri, A.; Potts, A.; Yakhnin, H.; Babitzke, P.; Romeo, T. Regulation of Iron Storage by CsrA Supports Ex-ponential

Growth of Escherichia coli. mBio 2019, 10, e01034-19. [CrossRef] [PubMed]

Gerken, H.; Vuong, P.; Soparkar, K.; Misra, R. Roles of the EnvZ/OmpR Two-Component System and Porins in Iron Acquisition

in Escherichia coli. mBio 2020, 11, e01192-20. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る