リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials

Iijima, Yuuka 大阪大学

2021.04.01

概要

Applying empirical alloy parameters (including Mo equivalent), the predicted ground state diagram, and thermodynamic calculations, noble nonequiatomic Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials (BioHEAs) were designed and newly developed. It is found that the Moeq and valence electron concentration (VEC) parameters are useful for alloy design involving BCC structure formation in bio mediumentropy alloys and BioHEAs. Finally, we find a Ti28.33Zr28.33Hf28.33Nb6.74Ta6.74Mo1.55 (at.%) BioHEA that exhibits biocompatibility comparable to that of CP–Ti, higher mechanical strength than CP–Ti, and an appreciable room-temperature tensile ductility. The current findings pave the way for new Ti–Zr–Hf–Nb–Ta–Mo BioHEAs development and are applicable for another BioHEA alloys system.

この論文で使われている画像

参考文献

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218, https://doi.org/10.1016/j.msea.2003.10.257.

[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nano- structured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy De- sign Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303, https://doi.org/10.1002/adem.200300567.

[3] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related con- cepts, Acta Mater. 122 (2017) 448–511, https://doi.org/10.1016/j.actamat.2016.08.081.

[4] B.S. Murty, J.-W. Yeh, S. Ranganathan, High-Entropy Alloys, first ed Elsevier, 2014https://doi.org/10.1016/C2013-0-14235-3.

[5] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys, first ed Springer, 2016https://doi.org/10.1007/978-3-319-27013-5.

[6] M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials, Scr. Mater. 129 (2017) 65–68, https://doi.org/10.1016/j.scriptamat.2016.10.028.

[7] S.P. Wang, J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties, Mater. Sci. Eng. C. 73 (2017) 80–89, https://doi.org/10.1016/j.msec.2016.12.057.

[8] T. Nagase, K. Mizuuchi, T. Nakano, Solidification Microstructures of the Ingots Ob- tained by Arc Melting and Cold Crucible Levitation Melting in TiNbTaZr Medium- Entropy Alloy and TiNbTaZrX (X = V, Mo, W) High-Entropy Alloys, Entropy 2 (2019) 483, https://doi.org/10.3390/e21050483.

[9] T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non- equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, J. Alloys Compd. 753 (2018) 412–421, https://doi.org/10.1016/j.jallcom.2018.04.082.

[10] T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Development of non- equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Scr. Mater. 172 (2019) 83–87, https://doi.org/10.1016/j.scriptamat.2019.07.011.

[11] Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Mater. Res. Lett. 7 (2019) 225–231, https://doi.org/10.1080/21663831.2019.1584592.

[12] A. Motallebzadeh, N.S. Peighambardoust, S. Sheikh, H. Murakami, S. Guo, D. Canadinc, Formation, structure and properties of biocompatible TiZrHfNbTa high- entropy alloys, Intermetallics 113 (2019) 106572, https://doi.org/10.1016/j. intermet.2019.106572.

[13] G. Popescu, B. Ghiban, C.A. Popescu, L. Rosu, R. Trusca, I. Carcea, V. Soare, D. Dumitrescu, I. Constantin, M.T. Olaru, B.A. Carlan, New TiZrNbTaFe high entropy alloy used for medical applications, IOP Conf. Series 400 (2018) 022049, https://doi.org/10.1088/1757-899X/400/2/022049.

[14] T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, T. Nakano, Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomate- rials, Mater. Sci. Eng. C 107 (2020) 110322, https://doi.org/10.1016/j.msec.2019.110322.

[15] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18 (2010) 1758–1765, https://doi.org/10.1016/j.intermet.2010.05.014.

[16] O.N. Senkov, J.M. Scotta, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd 509 (2011) 6043–6048, https://doi.org/10.1016/j.jallcom.2011.02.171.

[17] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys-A review, J. Mater. Res. 33 (2018) 3092–3128, https:// doi.org/10.1557/jmr.2018.153.

[18] S. Sheikh, S. Shafeie, Q. Hu, J. Ahlstrom, C. Persson, J. Vesely, J. Zyka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys. 120 (2016) 164902, https://doi.org/10.1063/1.4966659.

[19] V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, R. Banerjee, Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy, Sci. Rep. 8 (2018) 8816, https://doi.org/10.1038/s41598-018-27144-3.

[20] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, A.P.L. Materials, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1(1) (2013) 011002, https://doi.org/10.1063/1.4812323.

[21] Materials Project, https://materialsproject.org/ (Assessed, Nov. 28, 2020).

[22] T. Nagase, M. Takemura, M. Matsumuro, M. Matsumoto, Y. Fujii, Design and micro- structure analysis of globules in Al-Co-La-Pb immiscible alloys with an amorphous phase, Materials & Design 117 (2017) 338–345, https://doi.org/10.1016/j.matdes.2016.12.092.

[23] T. Nagase, M. Todai, T. Nakano, Development of Ti–Zr–Hf–Y–La high-entropy alloys with dual hexagonal-close-packed structure, Scr. Mater. 186 (2020) 242–246, https://doi.org/10.1016/j.scriptamat.2020.05.033.

[24] T. Nagase, M. Todai, T. Nakano, Development of Co–Cr–Mo–Fe–Mn–W and Co–Cr– Mo–Fe–Mn–W–Ag High-Entropy Alloys Based on Co–Cr–Mo Alloys, Mater. Trans. 61 (2020) 567–576, https://doi.org/10.2320/matertrans.MT-MK2019002.

[25] T. Nagase, M. Todai, T. Nakano, Co-Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B High Entropy Alloys for Biomedical Application, Crystals 10 (2020) 527, https://doi.org/ 10.3390/cryst10060527.

[26] C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics 62 (2015) 76–83, https://doi.org/10. 1016/j.intermet.2015.03.013.

[27] C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett. 175 (2016) 284–287, https://doi.org/10.1016/j.matlet.2016.03.133.

[28] K.-K. Tseng, C.-C. Juan, S. Tso, H.-C. Chen, C.-W. Tsai, J.-W. Yeh, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys, Entropy 21 (2019) 21, https://doi.org/10.3390/e21010015.

[29] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and oste- ogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials 22 (2001) 1253–1262, https://doi.org/10.1016/S0142-9612(00)00275-1.

[30] B.L. Wang, L. Li, Y.F. Zheng, In vitro cytotoxicity and hemocompatibility studies of Ti- Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys, Biomed. Mater. 5 (2010) 044102, https://doi.org/10.1088/1748-6041/5/4/044102.

[31] T. Hanawa, Techniques Improving Reliability of Metals in the Human Body, J. Surf. Finish. Soc. Jpn. 58 (2007) 495–499, https://doi.org/10.4139/sfj.58.495.

[32] T. Nagase, A. Terayama, T. Nagaoka, N. Fuyama, T. Sakamoto, Alloy Design and Fab- rication of Ingots of Al–Mg–Li–Ca Light-Weight Medium Entropy Alloys, Mater. Trans. 61 (2020) 1369–1380, https://doi.org/10.2320/matertrans.F-M2020825.

[33] A. Takeuchi, A. Inoue, Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys, Mater. Trans. 41 (2000) 1372–1378, https://doi.org/ 10.2320/matertrans1989.41.1372.

[34] A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Differ- ence, Heat of Mixing and Period of Constituent Elements and Its Application to Char- acterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817–2829, https://doi.org/10.2320/matertrans.46.2817.

[35] Q.Wang Y.F.Ye, Y.Yang J.LuC.T.Liu, High-entropy alloy: challenges and prospects, materialsToday 19 (2016) 349–362, https://doi.org/10.1016/j.mattod.2015.11.026.

[36] D. Eylon, R.R. Boyer, D.A. Koss, Beta Titanium Alloys in the 1990s, TMS, Warrendale PA, 1993.

[37] G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994.

[38] P.J. Bania, Beta titanium alloys and their role in the titanium industry, JOM 46 (1994)16–19, https://doi.org/10.1007/BF03220742.

[39] K. Ishida, Schaeffler-Type Phase Diagram of Ti-Based Alloys, Metall. Mater. Trans., A 48 (2017) 4990–4998, https://doi.org/10.1007/s11661-017-4218-3.

[40] TiMo3, Materials Project ID mp-1017983, doi:10.17188/1350038

[41] ZrMo2, Materials Project ID mp-2049, doi:10.17188/1195617

[42] HfMo2, Materials Project ID mp-2363, doi:10.17188/1199626

[43] HfZrMo4, Materials Project ID mp-1224193.

[44] FactSage, http://www.factsage.com/ (Assessed, Nov. 28, 2020).

[45] SGTE2017, http://www.crct.polymtl.ca/fact/documentation/ (Assessed, Nov. 28, 2020).

[46] Mitsuwa Chemical Co., Ltd, Japan, http://www.eonet.ne.jp/~mitsuwa-chem/index. html (Assessed, Jan. 10, 2021).

[47] RARE METALLIC Co., Ltd, Japan, http://rare-meta.co.jp/ (Assessed, Jan. 10, 2020).

[48] T. Nagase, M. Takemura, M. Matsumuro, T. Maruyama, Solidification Microstructure of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Ingots, Mater. Trans. 59 (2018) 255–264, https://doi.org/10.2320/matertrans.F-M2017851.

[49] T. Nagase, T. Kakeshita, K. Matsumura, K. Nakazawa, S. Furuya, N. Ozoe, K. Yoshino, Development of Fe-Co-Cr-Mn-Ni-C high entropy cast iron (HE cast iron) available for casting in air atmosphere, Materials & Design 184 (2019) 108172, https://doi.org/10.1016/j.matdes.2019.108172.

[50] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volu- metric and morphology data, J. Appl. Crystallography 41 (2008) 653–658, https:// doi.org/10.1107/S0021889811038970.

[51] T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, M. Todai, H.S. Kim, T. Nakano, Development of TiNbTaZrMo bio–high entropy alloy (BioHEA) super–solid solution by selective laser melting, and its improved mechanical property and biocompatibility, Scr. Mater. 194 (2021) 113658, https://doi.org/10.1016/j.scriptamat.2020.113658.

[52] JIS SUS316L. http://www.jssa.gr.jp/contents/products/standards/jis/austenite/ (accessed 16 May 2019).

[53] ASTM F1537–08. https://www.astm.org/Standards/F1537.htm (accessed 16 May 2019).

[54] T.M. Devine, F.J. Kummer, J. Wulff, Wrought cobalt-chromium surgical implant al- loys, J. Mater. Sci. 7 (1972) 126–128, https://doi.org/10.1007/BF00549560.

[55] T.M. Devine, J. Wulff, Cast vs. wrought cobalt-chromium surgical implant alloys, J. Biomed. Mater. Res. 9 (1975) 151–167, https://doi.org/10.1002/jbm.820090205.

[56] J. Cohen, R.M. Rose, J. Wulff, Recommended heat treatment and alloy additions for cast Co-Cr surgical implants, J. Biomed. Mater. Res. 12 (1978) 935–937, https:// doi.org/10.1002/jbm.820120613.

[57] M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A 33 (2002) 477–486, https://doi.org/10.1007/s11661-002-0109-2.

[58] E. Liverani, A. Fortunato, A. Leardini, C. Belvedere, S. Siegler, L. Ceschini, A. Ascari, Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of Selective Laser Melting (SLM), Materials & Design 106 (2016) 60–68, https://doi.org/10.1016/j. matdes.2016.05.083.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る