リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy

Gokcekaya, Ozkan 大阪大学

2021.06.15

概要

Additive manufacturing offers an exclusive way of anisotropic microstructure control with a high de- gree of freedom regarding variation in process parameters. This study demonstrates a unique texture formation in Inconel 718 (IN718) using a bidirectional laser scan in a laser powder bed fusion (LPBF) process for tailoring the mechanical properties. We developed three distinctive textures in IN718 using LPBF: a single-crystal-like microstructure (SCM) with a <110> orientation in the build direction (BD), crystallographic lamellar microstructure (CLM) with a <110>-oriented main layer and <100>-oriented sub-layer in the BD, and polycrystalline with a weak orientation. The microstructure observations and finite element simulations showed that the texture evolution of the SCM and CLM was dominated by the melt-pool shape and related heat-flow direction. The specimen with CLM exhibited a simultaneous im- provement in strength and ductility owing to the stress-transfer coefficient between the <110>-oriented main and <100>-oriented sub-grains, showing superior mechanical properties compared to cast-IN718. This behavior is largely attributed to the presence of the boundary between the main and sub-layers (crystallographic grain boundary) lying parallel to the BD uniquely formed under the LPBF process. Fur- thermore, the strength–ductility balance of the part with the CLM can be controlled by changing the stress-transfer coefficient and the Schmidt factor through an alteration of the loading axis. Control of the crystallographic texture, including the CLM formation, is beneficial for tailoring and improving the mechanical performance of the structural materials, which can be a promising methodology.

この論文で使われている画像

参考文献

[1] T.S. Srivatsan, T.S. Sudarshan, Additive Manufacturing: Innovations, Advances, and Applications, CRC Press, 2015.

[2] D. Carluccio, A.G. Demir, M.J. Bermingham, M.S. Dargusch, Challenges and Op- portunities in the Selective Laser Melting of Biodegradable Metals for Load- Bearing Bone Scaffold Applications, Metall. Mater. Trans. A. 51 (2020) 3311– 3334, doi:10.1007/s11661- 020- 05796- z.

[3] O. Gokcekaya, N. Hayashi, T. Ishimoto, K. Ueda, T. Narushima, T. Nakano, Crys- tallographic orientation control of pure chromium via laser powder-bed fusion and improved high temperature oxidation resistance, Addit. Manuf. (2020), doi:10.1016/j.addma.2020.101624.

[4] Z. Sun, X. Tan, S.B. Tor, W.Y. Yeong, Selective laser melting of stainless steel 316L with low porosity and high build rates, Mater. Des. 104 (2016) 197–204, doi:10.1016/j.matdes.2016.05.035.

[5] B. Zhang, H. Liao, C. Coddet, Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture, Mater. Des. 34 (2012) 753– 758, doi:10.1016/j.matdes.2011.06.061.

[6] A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, Effects of build- ing orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel, Int. J. Fatigue. 94 (2017) 218–235, doi:10.1016/ j.ijfatigue.2016.03.014.

[7] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 (2015) 41101, doi:10.1063/1.4935926.

[8] J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, Inves- tigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting, Int. J. Adv. Manuf. Technol. 76 (2015) 869–879, doi:10.1007/s00170-014-6297-2.

[9] L.N. Carter, C. Martin, P.J. Withers, M.M. Attallah, The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, J. Alloys Compd. 615 (2014) 338–347, doi:10.1016/ j.jallcom.2014.06.172.

[10] T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano, Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melt- ing for the development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 132 (2017) 34–38, doi:10.1016/j.scriptamat.2016.12.038.

[11] F. Liu, X. Lin, C. Huang, M. Song, G. Yang, J. Chen, W. Huang, The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718, J. Alloys Compd. 509 (2011) 4505–4509, doi:10.1016/j.jallcom.2010.11.176.

[12] R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A. Rahman Rashid, M. Brandt, Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM), J. Mater. Process. Technol. 249 (2017) 502–511, doi:10.1016/j.jmatprotec.2017.06.023.

[13] L. Parry, I.A. Ashcroft, R.D. Wildman, Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo- mechanical simulation, Addit. Manuf. 12 (2016) 1–15, doi:10.1016/j.addma.2016.05.014.

[14] H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718, Mater. Sci. Eng. A. 753 (2019) 42–48, doi:10.1016/j.msea.2019.03.007.

[15] Y.C. Wang, L.M. Lei, L. Shi, H.Y. Wan, F. Liang, G.P. Zhang, Scanning strategy dependent tensile properties of selective laser melted GH4169, Mater. Sci. Eng.A. 788 (2020) 139616, doi:10.1016/j.msea.2020.139616.

[16] M. Ni, C. Chen, X. Wang, P. Wang, R. Li, X. Zhang, K. Zhou, Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by addi- tive manufacturing, Mater. Sci. Eng. A. 701 (2017) 344–351, doi:10.1016/j.msea. 2017.06.098.

[17] H. Qi, M. Azer, A. Ritter, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718, Metall. Mater. Trans. A. 40 (2009) 2410–2422, doi:10.1007/s11661-009-9949- 3.

[18] K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez,S. Collins, F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater 60 (2012) 2229–2239, doi:10.1016/j.actamat.2011.12.032.

[19] H.L. Wei, J. Mazumder, T. DebRoy, Evolution of solidification texture during ad- ditive manufacturing, Sci. Rep. 5 (2015) 16446, doi:10.1038/srep16446.

[20] M. Gäumann, C. Bezençon, P. Canalis, W. Kurz, Single-crystal laser deposition of superalloys: processing–microstructure maps, Acta Mater 49 (2001) 1051– 1062, doi:10.1016/S1359-6454(00)00367-0.

[21] P. Kumar, O. Prakash, U. Ramamurty, Micro-and meso-structures and their in- fluence on mechanical properties of selectively laser melted Ti-6Al-4V, Acta Mater 154 (2018) 246–260, doi:10.1016/j.actamat.2018.05.044.

[22] M. Garibaldi, I. Ashcroft, M. Simonelli, R. Hague, Metallurgy of high-silicon steel parts produced using Selective Laser Melting, Acta Mater 110 (2016) 207– 216, doi:10.1016/j.actamat.2016.03.037.

[23] Z. Sun, X. Tan, S.B. Tor, C.K. Chua, Simultaneously enhanced strength and duc- tility for 3D-printed stainless steel 316L by selective laser melting, NPG Asia Mater 10 (2018) 127–136, doi:10.1038/s41427-018-0018- 5.

[24] T.D. McLouth, D.B. Witkin, G.E. Bean, S.D. Sitzman, P.M. Adams, J.R. Lohser, J.-M. Yang, R.J. Zaldivar, Variations in ambient and elevated temperature me- chanical behavior of IN718 manufactured by selective laser melting via process parameter control, Mater. Sci. Eng. A. 780 (2020) 139184, doi:10.1016/j.msea. 2020.139184.

[25] S.-H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting, Scr. Mater. 159 (2019) 89–93, doi:10.1016/j.scriptamat.2018.09.017.

[26] T. Ishimoto, S. Wu, Y. Ito, S.-H. Sun, H. Amano, T. Nakano, Crystallographic ori- entation control of 316L austenitic stainless steel via selective laser melting, ISIJ Int 60 (2020) 1758–1764, doi:10.2355/isijinternational.ISIJINT-2019-744.

[27] S.-H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y.-P. Li, Y. Cui, A. Chiba, Electron beam additive manufacturing of Inconel 718 alloy rods: Impact of build direc- tion on microstructure and high-temperature tensile properties, Addit. Manuf. 23 (2018) 457–470, doi:10.1016/j.addma.2018.08.017.

[28] K. Hagihara, T. Nakano, M. Suzuki, T. Ishimoto, S.-H.Sun Suyalatu, S.-H. Sun, Successful additive manufacturing of MoSi2 including crystallographic texture and shape control, J. Alloys Compd. 696 (2017) 67–72, doi:10.1016/j.jallcom. 2016.11.191.

[29] T. Nagase, T. Hori, M. Todai, S.-H. Sun, T. Nakano, Additive manufacturing of dense components in beta–titanium alloys with crystallographic texture from a mixture of pure metallic element powders, Mater. Des. 173 (2019) 107771, doi:10.1016/j.matdes.2019.107771.

[30] Q. Jia, D. Gu, Selective laser melting additive manufacturing of Inconel 718 su- peralloy parts: Densification, microstructure and properties, J. Alloys Compd. 585 (2014) 713–721, doi:10.1016/j.jallcom.2013.09.171.

[31] V.A. Popovich, E.V Borisov, A.A. Popovich, V.S. Sufiiarov, D.V Masaylo, L. Alzina, Functionally graded Inconel 718 processed by additive manufacturing: Crys- tallographic texture, anisotropy of microstructure and mechanical properties, Mater. Des. 114 (2017) 441–449, doi:10.1016/j.matdes.2016.10.075.

[32] M.C. Chaturvedi, Y. Han, Strengthening mechanisms in Inconel 718 superalloy, Met. Sci. 17 (1983) 145–149, doi:10.1179/030634583790421032.

[33] S.-H. Sun, K. Hagihara, T. Nakano, Effect of scanning strategy on texture for- mation in Ni-25at.%Mo alloys fabricated by selective laser melting, Mater. Des. 140 (2018) 307–316, doi:10.1016/j.matdes.2017.11.060.

[34] D. Gu, Y. Shen, Effects of processing parameters on consolidation and mi- crostructure of W–Cu components by DMLS, J. Alloys Compd. 473 (2009) 107– 115, doi:10.1016/j.jallcom.2008.05.065.

[35] H.J. Willy, X. Li, Z. Chen, T.S. Herng, S. Chang, C.Y.A. Ong, C. Li, J. Ding, Model of laser energy absorption adjusted to optical measurements with effective use in finite element simulation of selective laser melting, Mater. Des. 157 (2018) 24–34, doi:10.1016/j.matdes.2018.07.029.

[36] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. Golabi, Finite element sim- ulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater. Des. 89 (2016) 255–263, doi:10.1016/j.matdes. 2015.10.002.

[37] N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carl- son, S.S. Babu, Numerical modeling of heat-transfer and the influence of pro- cess parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing, Acta Mater 112 (2016) 303–314, doi:10.1016/j.actamat.2016.03.063.

[38] D. Zhang, Z. Feng, C. Wang, W. Wang, Z. Liu, W. Niu, Comparison of mi- crostructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting, Mater. Sci. Eng. A 724 (2018) 357–367, doi:10.1016/j.msea.2018.03.073.

[39] M.T. Andani, A. Lakshmanan, V. Sundararaghavan, J. Allison, A. Misra, Quan- titative study of the effect of grain boundary parameters on the slip system level Hall-Petch slope for basal slip system in Mg-4Al, Acta Mater 200 (2020) 148–161, doi:10.1016/j.actamat.2020.08.079.

[40] S. Ghosh, A.K. Singh, S. Mula, Effect of critical temperatures on microstruc- tures and mechanical properties of Nb–Ti stabilized IF steel processed by multiaxial forging, Mater. Design. 100 (2016) 47–57, doi:10.1016/j.matdes.2016.03.107.

[41] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski,A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metal- lic components – Process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224, doi:10.1016/j.pmatsci.2017.10.001.

[42] S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Mater. Sci. Eng. A. 513–514 (2009) 311–318, doi:10.1016/j. msea.2009.02.019.

[43] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A comprehensive com- parison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder- bed fusion, Engineering 3 (2017) 685–694, doi:10.1016/J.ENG.2017.05.023.

[44] P. Köhnen, M. Létang, M. Voshage, J.H. Schleifenbaum, C. Haase, Understanding the process-microstructure correlations for tailoring the mechanical properties of L-PBF produced austenitic advanced high strength steel, Addit. Manuf. 30 (2019) 100914, doi:10.1016/j.addma.2019.100914.

[45] S. Ghorbanpour, M.E. Alam, N.C. Ferreri, A. Kumar, B.A. McWilliams, S.C. Vo- gel, J. Bicknell, I.J. Beyerlein, M. Knezevic, Experimental characterization and crystal plasticity modeling of anisotropy, tension-compression asymmetry, and texture evolution of additively manufactured Inconel 718 at room and elevated temperatures, Int. J. Plast. 125 (2020) 63–79, doi:10.1016/j.ijplas.2019.09.002.

[46] S.P. Murray, K.M. Pusch, A.T. Polonsky, C.J. Torbet, G.G.E. Seward, N. Zhou,S.A.J. Forsik, P. Nandwana, M.M. Kirka, R.R. Dehoff, W.E. Slye, T.M. Pollock, A defect-resistant Co–Ni superalloy for 3D printing, Nat. Commun. 11 (2020) 4975, doi:10.1038/s41467- 020-18775- 0.

[47] H. Wu, D. Zhang, B. Yang, C. Chena, Y. Lia, K. Zhou, L. Jiang, R. Liu, Microstruc- tural evolution and defect formation in a powder metallurgy nickel-based su- peralloy processed by selective laser melting, J. Mater. Sci. Technol. 36 (2020) 7–17, doi:10.1016/j.jmst.2019.08.007.

[48] G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, R.J. Zaldivar, Build orientation effects on texture and mechanical properties of selective laser melting Inconel 718, J. Mater. Eng. Perform. 28 (2019) 1942–1949, doi:10.1007/s11665-019-03980- w.

[49] J.D. Livingston, B. Chalmers, Multiple slip in bicrystal deformation, Acta Metall 5 (1957) 322–327, doi:10.1016/0001-6160(57)90044-5.

[50] N.V Malyar, G. Dehm, C. Kirchlechner, Strain rate dependence of the slip trans- fer through a penetrable high angle grain boundary in copper, Scr. Mater. 138 (2017) 88–91, doi:10.1016/j.scriptamat.2017.05.042.

[51] M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda,M. Takeyama, Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting, Addit. Manuf. 13 (2017) 61–70, doi:10.1016/j.addma.2016.11.001.

[52] Y. Zhao, Q. Guo, Z. Ma, L. Yu, Comparative study on the microstructure evolu- tion of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties, Mater. Sci. Eng. A 791 (2020) 139735, doi:10.1016/j.msea.2020.139735.

[53] E.M. Fayed, M. Saadati, D. Shahriari, V. Brailovski, M. Jahazi, M. Medraj, Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion, Sci. Rep. 11 (2021) 2020, doi:10.1038/s41598-021-81618- 5.

[54] M. Cao, D. Zhang, Y. Gao, R. Chen, G. Huang, Z. Feng, R. Poprawe, J.H. Schleifen- baum, S. Ziegler, The effect of homogenization temperature on the microstruc- ture and high temperature mechanical performance of SLM-fabricated IN718 alloy, Mater. Sci. Eng. A 801 (2021) 140427, doi:10.1016/j.msea.2020.140427.

[55] X. Li, J.J. Shi, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, G.F. Chen, Improved plas- ticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process, Mater. Design. 180 (2019) 107915, doi:10.1016/j. matdes.2019.107915.

[56] H.Y Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Enhancing fatigue strength of selective laser melting-fabricated Inconel 718 by tailoring heat treatment route, Adv. Eng. Mater. 20 (2018) 1800307, doi:10.1002/adem.201800307.

参考文献をもっと見る