リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Immunohistochemically Detected Expression of ATRX, TSC2, and PTEN Predicts Clinical Outcomes in Patients With Grade 1 and 2 Pancreatic Neuroendocrine Tumors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Immunohistochemically Detected Expression of ATRX, TSC2, and PTEN Predicts Clinical Outcomes in Patients With Grade 1 and 2 Pancreatic Neuroendocrine Tumors

上村 淳 香川大学 DOI:10.1097/SLA.0000000000003624

2020.03.24

概要

Objective:
The goal of this retrospective study was to clarify the clinical implications of immunohistochemically detected protein expression for genes that are frequently mutated in pancreatic neuroendocrine tumors (PNETs).
Background:
The clinical management of PNETs is hindered by their heterogenous biological behavior. Whole-exome sequencing recently showed that 5 genes (DAXX/ATRX, MEN1, TSC2, and PTEN) are frequently mutated in PNETs. However, the clinical implications of the associated alterations in protein expression remain unclear.
Methods:
We collected Grade 1 and 2 (World Health Organization 2017 Classification) primary PNETs samples from 100 patients who underwent surgical resection. ATRX, DAXX, MEN1, TSC2, and PTEN expression were determined immunohistochemically to clarify their relationships with prognosis and clinicopathological findings.
Results:
Kaplan–Meier analysis indicated that loss of TSC2 (n = 58) or PTEN (n = 37) was associated with significantly shorter overall survival, and that loss of TSC2 or ATRX (n = 41) was associated with significantly shorter recurrence-free survival. Additionally, loss of ATRX or TSC2 was significantly associated with nodal metastasis. In a multivariate analysis, combined loss of TSC2 and ATRX (n = 31) was an independent prognostic factor for shorter recurrence-free survival (hazard ratio 10.1, 95% confidence interval 2.1–66.9, P = 0.003) in G2 PNETs.
Conclusions:
Loss of ATRX, TSC2, and PTEN expression might be useful as a method of clarifying the behavior and clinical outcomes of Grade 1 and 2 PNETs in routine clinical practice. Combined loss of TSC2 and ATRX had an especially strong, independent association with shorter recurrence-free survival in patients with G2 PNETs. Loss of pairs in ATRX, TSC2, or PTEN would be useful for selecting the candidate for postoperative adjuvant therapy.

この論文で使われている画像

参考文献

1.

10

11

Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin

Gastroenterol 2005; 19(5):753-81.

2.

Halfdanarson TR, Rabe KG, Rubin J, et al. Pancreatic neuroendocrine tumors

12

(PNETs): incidence, prognosis and recent trend toward improved survival. Ann

13

Oncol 2008; 19(10):1727-33.

14

3.

15

16

Lloyd RV OR, Kloppel G, Rosai J, editors. WHO Classification of Tumours of

Endocrine Organs 4th edition. . IARC 2017.

4.

Gao H, Liu L, Wang W, et al. Novel recurrence risk stratification of resected

23

Uemura J et al

pancreatic neuroendocrine tumor. Cancer Lett 2018; 412:188-193.

5.

Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine

carcinomas of the pancreas are genetically similar and distinct from well-

differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 2012;

36(2):173-84.

6.

Benetatos N, Hodson J, Marudanayagam R, et al. Prognostic factors and survival

after surgical resection of pancreatic neuroendocrine tumor with validation of

established and modified staging systems. Hepatobiliary Pancreat Dis Int 2018;

17(2):169-175.

10

7.

Fesinmeyer MD, Austin MA, Li CI, et al. Differences in Survival by Histologic

11

Type of Pancreatic Cancer. Cancer Epidemiology Biomarkers & Prevention

12

2005; 14(7):1766-1773.

13

8.

Gibril F, Doppman JL, Reynolds JC, et al. Bone metastases in patients with

14

gastrinomas: a prospective study of bone scanning, somatostatin receptor

15

scanning, and magnetic resonance image in their detection, frequency, location,

16

and effect of their detection on management. J Clin Oncol 1998; 16(3):1040-53.

24

Uemura J et al

9.

Hashim YM, Trinkaus KM, Linehan DC, et al. Regional lymphadenectomy is

indicated in the surgical treatment of pancreatic neuroendocrine tumors (PNETs).

Ann Surg 2014; 259(2):197-203.

10.

pancreatic neuroendocrine tumors. Arch Surg 2012; 147(9):820-7.

11.

Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic

endocrine tumors. Gastroenterology 2008; 135(5):1469-92.

12.

Nanno Y, Matsumoto I, Zen Y, et al. Pancreatic Duct Involvement in WellDifferentiated Neuroendocrine Tumors is an Independent Poor Prognostic Factor.

10

11

Krampitz GW, Norton JA, Poultsides GA, et al. Lymph nodes and survival in

Ann Surg Oncol 2017; 24(4):1127-1133.

13.

Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes

12

are frequently altered in pancreatic neuroendocrine tumors. Science 2011;

13

331(6021):1199-203.

14

14.

15

16

Scarpa A, Chang DK, Nones K, et al. Whole-genome landscape of pancreatic

neuroendocrine tumours. Nature 2017; 543:65.

15.

Heaphy CM, de Wilde RF, Jiao Y, et al. Altered telomeres in tumors with ATRX

25

Uemura J et al

and DAXX mutations. Science 2011; 333(6041):425.

16.

Marinoni I, Kurrer AS, Vassella E, et al. Loss of DAXX and ATRX are associated

with chromosome instability and reduced survival of patients with pancreatic

neuroendocrine tumors. Gastroenterology 2014; 146(2):453-60.e5.

17.

outcome in ampullary adenocarcinoma. J Surg Oncol 2016; 114(1):119-27.

18.

Edge S BD, Compton CC, et al. AJCC cancer staging manual, 7 edition. Springer

2010.

19.

10

11

Asano E, Okano K, Oshima M, et al. Phenotypic characterization and clinical

Chou A, Itchins M, de Reuver PR, et al. ATRX loss is an independent predictor of

poor survival in pancreatic neuroendocrine tumours. Hum Pathol 2018.

20.

Oshima M, Okano K, Muraki S, et al. Immunohistochemically detected

12

expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly

13

predicts survival in patients with resectable pancreatic cancer. Ann Surg 2013;

14

258(2):336-46.

15

16

21.

Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer

2007; 7(9):645-58.

26

Uemura J et al

22.

Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/Dpc4

haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive

adenocarcinoma of the pancreas. Cancer Cell 2007; 11(3):229-43.

23.

Tuveson D, Hanahan D. Translational medicine: Cancer lessons from mice to

humans. Nature 2011; 471(7338):316-7.

24.

Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression

profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 2010;

28(2):245-55.

25.

Chung DC, Brown SB, Graeme-Cook F, et al. Localization of putative tumor

10

suppressor loci by genome-wide allelotyping in human pancreatic endocrine

11

tumors. Cancer Res 1998; 58(16):3706-11.

12

26.

Rigaud G, Missiaglia E, Moore PS, et al. High resolution allelotype of

13

nonfunctional pancreatic endocrine tumors: identification of two molecular

14

subgroups with clinical implications. Cancer Res 2001; 61(1):285-92.

15

16

27.

Perren A, Komminoth P, Saremaslani P, et al. Mutation and expression analyses

reveal differential subcellular compartmentalization of PTEN in endocrine

27

Uemura J et al

pancreatic tumors compared to normal islet cells. Am J Pathol 2000; 157(4):1097-

103.

28.

Chou WC, Lin PH, Yeh YC, et al. Genes involved in angiogenesis and mTOR

pathways are frequently mutated in Asian patients with pancreatic neuroendocrine

tumors. Int J Biol Sci 2016; 12(12):1523-1532.

29.

Qian ZR, Ter-Minassian M, Chan JA, et al. Prognostic significance of MTOR

pathway component expression in neuroendocrine tumors. J Clin Oncol 2013;

31(27):3418-25.

30.

Chatzipantelis P, Konstantinou P, Kaklamanos M, et al. The role of

10

cytomorphology and proliferative activity in predicting biologic behavior of

11

pancreatic neuroendocrine tumors: a study by endoscopic ultrasound-guided fine-

12

needle aspiration cytology. Cancer 2009; 117(3):211-6.

13

31.

Piani C, Franchi GM, Cappelletti C, et al. Cytological Ki-67 in pancreatic

14

endocrine tumours: an opportunity for pre-operative grading. Endocr Relat

15

Cancer 2008; 15(1):175-81.

16

28

100

Overall

51 (51.0)

Male

63

23-88

55(55.0)

45(45.0)

Median

Range

<65

.≥65

1-147

Range

43 (43.0)

NET G2

Tumor Location

57 (57.0)

NET G1

WHO classification (2010)

43.5

Median

Follow-up, months

Outcome

60.8 (SD, 15.1)

Mean

Age, years

49 (49.0)

Female

Gender

No. of Patients (%)

Variable

92.1

95.7

94.5

93.8

91.4

97.1

94.1

3 years

Table 1. Clinicopathological Parameters and Outcome (n=100)

82.4

95.7

94.5

85.6

80.8

97.1

89.2

5 years

0.5429

0.0974

0.749

0.1245

(P Value)

Log-rank

Overall Survival (%)

74.1

97.6

86.9

87.7

82.3

93.0

87.2

3years

70.0

97.6

82.6

87.7

82.4

89.1

85.2

5 years

Recurrence-Free Survival (%)

0.1632

0.0005

0.708

0.4577

(P Value)

Log-rank

44 (44.0)

Body/tail

20

0.8-156

51 (52.6)

46 (47.4)

Median

Range

≤20 mm

.>20 mm

23 (23.0)

Positive

8 (8.0)

Positive

25(25.0)

Functioning

Negative

55(60.4)

20(22.0)

Positive

Vascular invasion

71(78.0)

Negative

Lymphatic invasion

75(75.0)

Non-functioning

Type of hormone production

92 (92.0)

Negative

Liver metastasis

77 (77.0)

Negative

Nodal metastasis

24.3 (SD, 20.8)

Mean

Tumor size, mm

56 (56.0)

Head

97.7

94.7

94.8

100

92.1

57.1

97.5

84.4

96.9

94.9

97.6

95.7

92.1

97.7

81.2

91.5

100

84.2

42.9

94.9

72.4

94.1

86.4

97.6

91.8

85.5

0.0142

0.1963

0.2424

<.0001

0.0513

0.1293

97.6

84.4

86.3

90.7

85.9

50.0

88.7

87.2

89.5

72.6

100

92.9

79.5

94.1

84.4

83.7

90.7

82.3

50.0

86.5

74.7

87.1

68.1

100

89.6

79.5

0.0003

0.2342

0.2010

0.0080

0.1286

<0.0001

22(24.7)

positive

58(58.6)

Positive (intact)

35(35.4)

Positive (intact)

74(74.7)

Positive (intact)

41(41.4)

Positive (intact)

abnormal (loss)

65(67.0)

61(62.2)

Positive (intact)

p53

37(37.8)

Negative (loss)

PTEN

58(58.6)

Negative (loss)

TSC2 (tuberin)

25(25.3)

Negative (loss)

MEN1 (Menin)

64(64.6)

Negative (loss)

DAXX

41(41.4)

Negative (loss)

ATRX

Immunohistochemistry

67(75.3)

36(39.6)

Negative

Perineural infiltration

Positive

92.9

98.3

90.1

100

89.1

95.3

90.4

93.7

94.5

97.9

88.6

84.0

98.2

90.3

89.0

94.0

84.1

100

79.7

91.2

84.0

93.7

88.1

93.0

84.0

44.8

98.2

77.3

0.1975

0.0486

0.007

0.5940

0.7908

0.0558

0.0002

87.0

88.6

84.5

94.2

79.3

88.4

83.7

95.7

83.0

92.8

78.9

60.7

91.8

67.1

83.8

88.6

78.4

94.2

74.9

85.5

83.7

95.7

80.1

92.8

74.3

60.7

89.0

67.1

0.4697

0.0721

0.009

0.3759

0.2882

0.0117

0.00124

54(54.6)

Positive (intact)

29(29.3)

70(70.7)

Negative (loss)

Positive (intact)

P16

45(45.4)

32(33.0)

Negative (loss)

Rb1

normal (intact)

95.0

96.0

95.9

92.1

100

91.6

87.3

85.2

92.1

93.4

0.3067

0.4927

88.5

85.1

85.6

88.2

85.2

85.6

85.1

85.6

84.2

85.2

0.7769

0.5786

Table 2. Multivariate Analysis of Relapse-Free Survival for patients with G2 PNETS including Loss of

Combined Gene Protein Expression

Variables

Hazard Ratio

95% CI

TSC2 and ATRX negative

10.1

2.1-66.9

0.003

Vascular invasion

10.9

1.3-10.3

0.02

Nodal metastasis

5.8

1.2-29.3

0.02

Perineural invasion

2.1

0.5-10.3

0.46

Table 3. Summary of significant association between phenotypes and clinicopathological parameters (n=100)

ATRX negative (loss)

MEN1 negative (loss)

TSC2 negative (loss)

PTEN negative (loss)

Clinicopathological Parameters

35

Perineural invasion

0.002

Venous invasion

0.004

Nodal metastasis

0.014

Tumor size (>20 mm)

0.021

Recurrence

0.041

Hormone production

0.003

Venous invasion

0.012

Grade

0.02

Liver metastasis

0.023

Tumor size (>20 mm)

0.029

Hormone production

0.0008

Nodal metastasis

0.001

Recurrence

0.01

Liver metastasis

0.019

Tumor size (>20 mm)

0.024

Venous invasion

0.03

Venous invasion

0.007

Tumor size (>20 mm)

0.02

Recurrence

0.044

25

58

32

P value

0.2

0.4

0.6

0.8

1.0

Overall Survival (probability)

12

24

36

60

72

84

OS months

48

Log-rank 0.055

96 108 120

ATRX (‐), n=41

ATRX (+), n=58

ATRX positive (intact)

0.2

0.4

0.6

0.8

1.0

Figure 1

Relapse‐Free Survival (probability)

12

24

36

48

Log-rank 0.011

72

84

RFS months

60

96

ATRX (‐), n=41

108 120

ATRX (+), n=58

ATRX negative (loss)

Overall Survival (probability)

0.2

0.4

0.6

0.8

1.0

12

24

36

Log‐rank 0.007

60

72

OS months

48

84

96

TSC2 (‐), n=58

TSC2 (+), n=41

108 120

TSC2 positive (intact)

0.2

0.4

0.6

0.8

1.0

Figure 2

Relapse‐Free Survival (probability)

12

24

36

48

Log‐rank 0.009

72

84

RFS months

60

96

TSC2 (‐), n=58

TSC2 (+), n=41

108 120

TSC2 negative (loss)

0.2

0.4

0.6

0.8

1.0

Overall Survival (probability)

12

24

36

Log‐rank 0.04

60

72

OS months

48

84

PTEN (‐), n=37

PTEN (+), n=61

96 108 120

PTEN positive (intact)

0.2

0.4

0.6

0.8

1.0

Figure 3

Relapse‐Free Survival (probability)

12

24

36

Log‐rank 0.07

48

72

84

RFS months

60

96 108 120

PTEN (‐), n=37

PTEN (+), n=61

PTEN negative (loss)

0.2

0.4

0.6

0.8

1.0

Overall Survival (probability)

12

24

36

48

TSC2 (+) and ATRX (+)

TSC2 or ATRX (‐)

TSC2 (‐) and ATRX (‐)

72

84

108

P=0.008

96

Log‐rank test

P=0.11

P=0.14

OS months

60

TSC2 (‐) and ATRX (‐), n=31

TSC2 or ATRX (‐), n=37

TSC2 (+) and ATRX (+), n=31

120

0.2

0.4

0.6

0.8

1.0

Figure 4 Relapse-Free Survival (probability)

24

36

48

TSC2 (+) and ATRX (+)

TSC2 or ATRX (‐)

TSC2 (‐) and ATRX (‐)

12

72

84

108

P=0.003

96

Log‐rank test

P=0.005

P=0.73

RFS months

60

TSC2 (‐) and ATRX (‐), n=31

TSC2 (+) and ATRX (+), n=31

TSC2 or ATRX (‐), n=37

120

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る