リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In vivo regeneration of rat laryngeal cartilage with mesenchymal stem cells derived from human induced pluripotent stem cells via neural crest cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In vivo regeneration of rat laryngeal cartilage with mesenchymal stem cells derived from human induced pluripotent stem cells via neural crest cells

Yoshimatsu, Masayoshi 京都大学 DOI:10.14989/doctor.k23417

2021.07.26

概要

【背景】
 喉頭・気管は軟骨組織(硝子軟骨)により枠組みを保持されており、呼吸、発声、嚥下機能を担う重要な臓器である。しかし、外傷や、炎症性疾患・悪性腫瘍に対する手術などで軟骨が欠損した場合、枠組みが維持できなくなり、その機能は大きく損なわれる。硝子軟骨は再生能力に乏しいため、喉頭・気管の軟骨欠損に対してこれまで様々な再生医療研究が行われてきたが、治療法の確立には至っていない。近年、細胞治療のための細胞源として、軟骨細胞への分化能を示し,増殖能を持つ間葉系幹細胞 (mesenchymal stem cell: MSC)が着目されており、自家MSC を用いた軟骨組織再生効果が示されている。しかし、自家 MSC などの初代培養 MSC の場合、増殖能や分化能が継代とともに失われるため移植に必要な十分量の細胞を得ることが難しい場合がある。そこで無限増殖能、多分化能を有するinduced pluripotent stem cell (iPS)細胞に着目した。
 甲状軟骨は神経堤細胞 (neural crest cell: NCC)由来MSC を起源とすると考えられている。この発生過程を模倣し作製された、NCC を介したヒトiPS 由来MSC (iMSC)のin vitro での軟骨分化能はすでに示されているが、in vivo における軟骨分化能や軟骨組織再生能は未だ示されていない。そこで本研究では NCC を介して誘導したiMSC の軟骨再生効果を、ラット甲状軟骨欠損モデルを用いて検討した。

【方法】
 ヒトiPS 細胞からNCC を介してiMSC への分化誘導を行った。将来の臨床応用の可能性を考えて、動物由来成分不含、無血清の培養条件を選択し、誘導された細胞はフローサイトメトリー解析により表面抗原の発現を確認することにより iMSC への分化を確認した。
 iMSC は温度感受性ウェルプレートで培養した後、低接着性ウェルプレート上でさらに培養を行い、細胞集塊を形成させた。免疫不全ラットの甲状軟骨両翼に直径1 mm の円盤状軟骨欠損部位を作製した後、左側にのみiMSC の細胞集塊を3 個移植し、4 週、8 週後に組織学的評価を行った。

【結果】
 移植した14 匹全例で移植部位に一致してヒト核抗体 (human nuclear antigen: HNA)陽性細胞を認め、移植細胞の生着が確認された。右側には欠損部位に軟骨組織を認めなかったが、左側では術後4 週で5/7 例、術後8 週で5/7 例においてHE 染色で正常軟骨に特徴的な小腔形成を示す軟骨様組織を甲状軟骨の切除断端に連続して認めた。また、軟骨様組織再生部位に一致してHNAおよび軟骨系細胞マーカーであるSOX9抗体の共発現を認め、軟骨の細胞外基質の評価に用いられるAlcian Blue 染色、Safranin O 染色では、同部位に正常硝子軟骨と類似した染色陽性組織を認めた。さらに、I 型・II 型コラーゲン抗体を用いた免疫組織化学ではHNA陽性細胞の周囲にもII型コラーゲン抗体陽性、I 型コラーゲン抗体陰性の硝子軟骨組織再生を認めた。

【考察】
 本実験結果から、移植したiMSC の一部が軟骨系細胞へ組織内で分化し、それらがラット甲状軟骨の再生を促進したことが示唆された。ホスト軟骨由来の細胞外基質がMSCの軟骨化を促進することが他臓器では報告されており、本研究ではすべての軟骨様再生組織がラット甲状軟骨の切除断端に連続するように認められたことから、ホスト甲状軟骨由来成分が iMSC の軟骨化に寄与したことが推察された。また、MSC 由来の細胞外基質も軟骨分化や軟骨組織再生を促すともいわれている。本研究で用いた細胞集塊作製方法はMSC による細胞外基質産生を促すことが報告されており、本研究ではiMSC の細胞集塊由来の細胞外基質もiMSC の軟骨分化に寄与した可能性がある。

【結論】
 ヒトiPS 細胞からNCC を介して誘導したiMSC のラット甲状軟骨再生効果が示された。本研究は気管喉頭軟骨欠損に対する新たな喉頭軟骨再生方法の可能性を示した。

参考文献

Akiyama, Y., Kikuchi, A., Yamato, M., Okano, T., 2014. Accelerated cell-sheet recovery from a surface successively grafted with polyacrylamide and poly(N- isopropylacrylamide). Acta Biomater. 10 (8), 3398–3408. https://doi.org/10.1016/ j.actbio.2014.03.024.

Albrecht, N.M., Ostrower, S., 2019. Case report of a laryngotracheal reconstruction with anterior and posterior costal cartilage graft and stent placement – Surgical technique. Int. J. Surgery Case Rep. 58, 145–152. https://doi.org/10.1016/j. ijscr.2019.04.009.

Ansari, T., Lange, P., Southgate, A., Greco, K., Carvalho, C., Partington, L., Bullock, A., MacNeil, S., Lowdell, M.W., Sibbons, P.D., Birchall, M.A., 2017. Stem Cell-Based Tissue-Engineered Laryngeal Replacement: Tissue-Engineered Laryngeal Replacement. STEM CELLS Transl. Med. 6 (2), 677–687. https://doi.org/10.5966/ sctm.2016-0130.

Astori, G., Amati, E., Bambi, F., Bernardi, M., Chieregato, K., Sch¨afer, R., Sella, S., Rodeghiero, F., 2016. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res. Ther. 7 (1) https://doi.org/10.1186/s13287-016-0352-x.

Bae, S.-W., Lee, K.-W., Park, J.-H., Lee, J., Jung, C.-R., Yu, J., Kim, H.-Y., Kim, D.-H.,2018. 3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic- Differentiated Bone Marrow-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 19, 1624. Doi: 10.3390/ijms19061624.

Bhosale, A.M., Richardson, J.B., 2008. Articular cartilage: structure, injuries and review of management. Br. Med. Bull. 87, 77–95. Doi: 10.1093/bmb/ldn025.

Birchall, M.A., Herrmann, P., Sibbons, P., Birchall, M., 2019. In vivo feasibility study of the use of porous polyhedral oligomeric silsesquioxane implants in partial laryngeal reconstruction. bioRxiv 587691. Doi: 10.1101/587691.

Chang, E., Wu, L., Masters, J., Lu, J., Zhou, S., Zhao, W., Sun, M., Meng, F., Soo, C.P., Zhang, J., Ma, D., 2019. Iatrogenic subglottic tracheal stenosis after tracheostomy and endotracheal intubation: A cohort observational study of more severity in keloid phenotype. Acta Anaesthesiol Scand 63 (7), 905–912. https://doi.org/10.1111/ aas.13371.

Chang, J.W., Park, S.A., Park, J.-K., Choi, J.W., Kim, Y.-S., Shin, Y.S., Kim, C.-H., 2014.Tissue-Engineered Tracheal Reconstruction Using Three-Dimensionally Printed Artificial Tracheal Graft: Preliminary Report: Tracheal Reconstruction with 3D- Printed Graft. Artif. Organs 38 (6), E95–E105. https://doi.org/10.1111/aor.12310.

Chiang, T., Pepper, V., Best, C., Onwuka, E., Breuer, C.K., Author, C., Otol Rhinol Laryngol Author manuscript, A., 2016. Clinical Translation of Tissue Engineered Trachea Grafts HHS Public Access Author manuscript. Ann Otol. Rhinol. Laryngol. 125, 873–885. Doi: 10.1177/0003489416656646.

Chijimatsu, Ryota, Ikeya, Makoto, Yasui, Yukihiko, Ikeda, Yasutoshi, Ebina, Kosuke, Moriguchi, Yu, Shimomura, Kazunori, Hart, David A, Yoshikawa, Hideki, Nakamura, Norimasa, 2017. Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair. Stem Cells Int. 2017, 1–18. https://doi.org/10.1155/2017/ 1960965.Pauken, Christine M., Heyes, Richard, Lott, David G., 2019. Mechanical, Cellular, and Proteomic Properties of Laryngotracheal Cartilage. CARTILAGE 10 (3), 321–328. https://doi.org/10.1177/1947603517749921. de Sousa, P.A., Galea, G., Turner, M., 2006. The road to providing human embryo stem cells for therapeutic use: The UK experience. Reproduction 132, 681–689. Doi: 10.1530/rep.1.01080.

DeLise, A.M., Fischer, L., Tuan, R.S., 2000. Cellular interactions and signaling in cartilage development. Osteoarth. Cartil. 8 (5), 309–334. https://doi.org/10.1053/ joca.1999.0306.

Elliott, Martin J., Butler, Colin R., Varanou-Jenkins, Aikaterini, Partington, Leanne, Carvalho, Carla, Samuel, Edward, Crowley, Claire, Lange, Peggy, Hamilton, Nicholas J., Hynds, Robert E., Ansari, Tahera, Sibbons, Paul, Fierens, Anja, McLaren, Claire, Roebuck, Derek, Wallis, Colin, Muthialu, Nagarajan, Hewitt, Richard, Crabbe, David, Janes, Sam M., De Coppi, Paolo, Lowdell, Mark W., Birchall, Martin A., 2017.Tracheal Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine: GMP Production of Tissue-Engineered Trachea. STEM CELLS Transl. Med. 6 (6), 1458–1464. https://doi.org/10.1002/sctm.16-0443.

Frisbie, D.D., Trotter, G.W., Powers, B.E., Rodkey, W.G., Steadman, J.R., Howard, R.D., Park, R.D., McIlwraith, C.W., 1999. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Veterinary Surgery 28, 242–255. Doi: 10.1053/jvet.1999.0242.

Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., 2014. Derivation of Mesenchymal Stromal Cells from Pluripotent Stem Cells through a Neural Crest Lineage using Small Molecule Compounds with Defined Media. PLoS ONE 9, 112291. https://doi.org/10.1371/journal.pone.

Go, Tetsuhiko, Jungebluth, Philipp, Baiguero, Silvia, Asnaghi, Adelaide, Martorell, Jaume, Ostertag, Helmut, Mantero, Sara, Birchall, Martin,Bader, Augustinus, Macchiarini, Paolo, 2010. Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J. Thora. Cardiovasc. Surg. 139 (2), 437–443. https://doi. org/10.1016/j.jtcvs.2009.10.002.

Gray, Fabienne L., Turner, Christopher G., Ahmed, Azra, Calvert, Catherine E., Zurakowski, David, Fauza, Dario O., 2012. Prenatal tracheal reconstruction with a hybrid amniotic mesenchymal stem cells–engineered construct derived from decellularized airway. J. Pediatr. Surg. 47 (6), 1072–1079. https://doi.org/10.1016/ j.jpedsurg.2012.03.006.

Hamilton, N.J., Kanani, M., Roebuck, D.J., Hewitt, R.J., Cetto, R., Culme-Seymour, E.J., Toll, E., Bates, A.J., Comerford, A.P., McLaren, C.A., Butler, C.R., Crowley, C., McIntyre, D., Sebire, N.J., Janes, S.M., O’Callaghan, C., Mason, C., de Coppi, P., Lowdell, M.W., Elliott, M.J., Birchall, M.A., 2015. Tissue-Engineered Tracheal Replacement in a Child: A 4-Year Follow-Up Study. Am. J. Transplant. 15,2750–2757. Doi: 10.1111/ajt.13318.

Hashimoto, Yusuke, Nishida, Yohei, Takahashi, Shinji, Nakamura, Hiroaki,Mera, Hisashi, Kashiwa, Kaori, Yoshiya, Shinichi, Inagaki, Yusuke, Uematsu, Kota, Tanaka, Yasuhito, Asada, Shigeki, Akagi, Masao, Fukuda, Kanji, Hosokawa, Yoshiya, Myoui, Akira, Kamei, Naosuke, Ishikawa, Masakazu, Adachi, Nobuo, Ochi, Mitsuo, Wakitani, Shigeyuki, 2019. Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: A multicenter prospective randomized control clinical trial. Regenerative Therapy 11, 106–113. https://doi.org/10.1016/j.reth.2019.06.002.

Im, Gun-II, Shin, Yong-Woon, Lee, Kee-Byung, 2005. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 13 (10), 845–853. https://doi.org/ 10.1016/j.joca.2005.05.005.

Jotz, G.P., da Luz Soster, P.R., Kunrath, S.O., Steffens, D., Braghirolli, D.I., Zettler, C.G., Beck, C.A., Muccillo, M., Lopes, R.F.F., Mastella, B., Pranke, P., 2014. Mesenchymal stem cells and nanofibers as scaffolds for the regeneration of thyroid cartilage. The Laryngoscope 124, E455–E460. Doi: 10.1002/lary.24805.

Kahveci, Zeynep, Minbay, F. Zehra, Cavusoglu, Ilkin, 2000. Safranin O Staining Using a Microwave Oven. Biotech. Histochem. 75 (6), 264–268. https://doi.org/10.3109/10520290009085130.

Kamiya, D., Takenaka-Ninagawa, N., Motoike, S., Kajiya, M., Akaboshi, T., Zhao, C., Shibata, M., Senda, S., Toyooka, Y., Sakurai, H., Kurihara, H., Ikeya, M., 2020, Unpublished results. Induction of Functional Mesenchymal Stem/Stromal Cells from Human iPCs Via a Neural Crest Cell Lineage Under Xeno-Free Conditions. SSRN Electronic J. Doi: 10.2139/ssrn.3741231.

Khoo, M.L.M., McQuade, L.R., Smith, M.S.R., Lees, J.G., Sidhu, K.S., Tuch, B.E., 2005.Growth and Differentiation of Embryoid Bodies Derived from Human Embryonic Stem Cells: Effect of Glucose and Basic Fibroblast Growth Factor1. Biol. Reproduct. 73, 1147–1156. Doi: 10.1095/biolreprod.104.036673.

Kim, I.G., Park, S.A., Lee, S.H., Choi, J.S., Cho, H., Lee, S.J., Kwon, Y.W., Kwon, S.K.,2020. Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Sci. Rep. 10, 1–14. https://doi.org/10.1038/s41598-020- 61405-4.

Kittaka, M., Kajiya, M., Shiba, H., Takewaki, M., Takeshita, K., Khung, R., Fujita, Takako, Iwata, T., Nguyen, T.Q., Ouhara, K., Takeda, K., Fujita, Tsuyoshi, Kurihara, H., 2015. Clumps of a mesenchymal stromal cell/extracellular matrix complex can be a novel tissue engineering therapy for bone regeneration. Cytotherapy 17, 860–873. https:// doi.org/10.1016/j.jcyt.2015.01.007.

Ko, J.Y., Kim, K. il, Park, S., Im, G. il, 2014. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 35, 3571–3581. Doi: 10.1016/j.biomaterials.2014.01.009.

Kretlow, James D, Jin, Yu-Qing, Liu, Wei, Zhang, Wen, Hong, Tan-Hui,Zhou, Guangdong, Baggett, L Scott, Mikos, Antonios G, Cao, Yilin, 2008. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol. 9 (1), 60. https://doi.org/10.1186/1471-2121-9-60.

La Noce, Marcella, Paino, Francesca, Spina, Anna, Naddeo, Pasqualina,Montella, Roberta, Desiderio, Vincenzo, De Rosa, Alfredo, Papaccio, Gianpaolo, Tirino, Virginia, Laino, Luigi, 2014. Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. J. Dent. 42 (7), 761–768. https://doi.org/10.1016/j.jdent.2014.02.018.

Liu, Q., Spusta, S.C., Mi, R., Lassiter, R.N.T., Stark, M.R., Ho¨ke, A., Rao, M.S., Zeng, X.,2012. Human Neural Crest Stem Cells Derived from Human ESCs and Induced Pluripotent Stem Cells: Induction, Maintenance, and Differentiation into Functional Schwann Cells. STEM CELLS Transl. Med. 1, 266–278. Doi: 10.5966/sctm.2011- 0042.

Ma, B., Leijten, J.C.H., Wu, L., Kip, M., van Blitterswijk, C.A., Post, J.N., Karprien, M., 2013. Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr. Cartil. 21, 599–603. https://doi.org/10.1016/j. joca.2013.01.014.

Madrigal, Marialaura, Rao, Kosagisharaf S, Riordan, Neil H, 2014. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J. Transl. Med. 12 (1) https://doi.org/ 10.1186/s12967-014-0260-8.

Mashimo, T., Takizawa, A., Voigt, B., Yoshimi, K., Hiai, H., Kuramoto, T., Serikawa, T., 2010. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS ONE 5. Doi: 10.1371/journal. pone.0008870.

Menendez, Laura, Kulik, Michael J, Page, Austin T, Park, Sarah S, Lauderdale, James D, Cunningham, Michael L, Dalton, Stephen, 2013. Directed differentiation of human pluripotent cells to neural crest stem cells. Nat. Protoc. 8 (1), 203–212. https://doi. org/10.1038/nprot.2012.156.

Mitsuzawa, Sadaki, Ikeguchi, Ryosuke, Aoyama, Tomoki, Ando, Maki,Takeuchi, Hisataka, Yurie, Hirofumi, Oda, Hiroki, Noguchi, Takashi, Ohta, Souichi, Zhao, Chengzhu, Ikeya, Makoto, Matsuda, Shuichi, 2019. Induced pluripotent stem cell-derived mesenchymal stem cells prolong hind limb survival in a rat vascularized composite allotransplantation model. Microsurgery 39 (8), 737–747. https://doi. org/10.1002/micr.30507.

Mitsuzawa, Sadaki, Zhao, Chengzhu, Ikeguchi, Ryosuke, Aoyama, Tomoki, Kamiya, Daisuke, Ando, Maki, Takeuchi, Hisataka, Akieda, Shizuka,Nakayama, Koichi, Matsuda, Shuichi, Ikeya, Makoto, 2020. Pro-angiogenic scaffold- free Bio three-dimensional conduit developed from human induced pluripotent stem cell-derived mesenchymal stem cells promotes peripheral nerve regeneration. Sci. Rep. 10 (1) https://doi.org/10.1038/s41598-020-68745-1.

Molins, Laureano, 2019. Patient follow-up after tissue-engineered airway transplantation. The Lancet 393 (10176), 1099. https://doi.org/10.1016/S0140-6736(19)30485-4.

Na, Yuyan, Shi, Yuting, Liu, Wanlin, Jia, Yanbo, Kong, Lingyue, Zhang, Ting,Han, Changxu, Ren, Yizhong, 2019. Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data. Int. J. Surg. 68, 56–62. https://doi.org/10.1016/j. ijsu.2019.06.007.

Nakagawa, Masato, Taniguchi, Yukimasa, Senda, Sho, Takizawa, Nanako,Ichisaka, Tomoko, Asano, Kanako, Morizane, Asuka, Doi, Daisuke, Takahashi, Jun, Nishizawa, Masatoshi, Yoshida, Yoshinori, Toyoda, Taro, Osafune, Kenji, Sekiguchi, Kiyotoshi, Yamanaka, Shinya, 2014. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4 (1) https://doi.org/10.1038/srep03594.

Nakagawa, T., Lee, S.Y., Reddi, A.H., 2009. Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor β1. Arthritis Rheum. 60, 3686–3692. https://doi.org/10.1002/art.27229.

Nejadnik, H., Diecke, S., Lenkov, O.D., Chapelin, F., Donig, J., Tong, X., Derugin, N., Chan, R.C.F., Gaur, A., Yang, F., Wu, J.C., Daldrup-Link, H.E., 2015. ImprovedApproach for Chondrogenic Differentiation of Human Induced Pluripotent Stem Cells. Stem cell Rev. Rep. 11, 242–253. Doi: 10.1007/s12015-014-9581-5.

Nejadnik, Hossein, Hui, James H., Feng Choong, Erica Pei, Tai, Bee-Choo, Lee, Eng Hin, 2010. Autologous Bone Marrow–Derived Mesenchymal Stem Cells Versus Autologous Chondrocyte Implantation: An Observational Cohort Study. Am. J. Sports Med. 38 (6), 1110–1116. https://doi.org/10.1177/0363546509359067.

Ott, Lindsey M., Vu, Cindy H., Farris, Ashley L., Fox, Katrina D., Galbraith, Richard A., Weiss, Mark L., Weatherly, Robert A., Detamore, Michael S., 2015. Functional Reconstruction of Tracheal Defects by Protein-Loaded, Cell-Seeded, Fibrous Constructs in Rabbits. Tissue Eng. Part A 21 (17-18), 2390–2403. https://doi.org/ 10.1089/ten.tea.2015.0157.

Outani, H., Okada, M., Yamashita, A., Nakagawa, K., Yoshikawa, H., 2013. Direct Induction of Chondrogenic Cells from Human Dermal Fibroblast Culture by Defined Factors. PLoS ONE 8, 77365. Doi: 10.1371/journal.pone.0077365.

Prockop, Darwin J., 1997. Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues. Science 276 (5309), 71–74. https://doi.org/10.1126/science:276.5309.71.

Rim, Yeri Alice, Nam, Yoojun, Park, Narae, Lee, Jennifer, Park, Sung-hwan, Ju, Ji Hyeon, 2018. Repair potential of nonsurgically delivered induced pluripotent stem cell- derived chondrocytes in a rat osteochondral defect model. J. Tissue Eng. Regen.Med. 12 (8), 1843–1855. https://doi.org/10.1002/term.2705.

Squillaro, Tiziana, Peluso, Gianfranco, Galderisi, Umberto, 2016. Clinical Trials with Mesenchymal Stem Cells: An Update. Cell Transplant 25 (5), 829–848. https://doi. org/10.3727/096368915X689622.

Tabler, J.M., Rigney, M.M., Berman, G.J., Gopalakrishnan, S., Heude, E., Al-Lami, H.A., Yannakoudiadkis, B.Z., Fitch, R.D., Carter, C., Vokes, S., Liu, K.J., Tajbakhsh, S., Egnor, S.E.R., Wallingford, J.B., 2017. Cilia-mediated hedgehog signaling controls form and function in the mammalian larynx. eLife 6. Doi: 10.7554/eLife.19153.

Tran, D., Golick, M., Rabinovitz, H.S., Rivlin, D., Elgart, G., Nordlow, B., 2000.Hematoxylin and safranin O staining of frozen sections. Dermatologic Surgery 26, 197–199. Doi: 10.1046/j.1524-4725.2000.09220.x.

Uto, Sakura, Nishizawa, Satoru, Hikita, Atsuhiko, Takato, Tsuyoshi, Hoshi, Kazuto, 2018. Application of induced pluripotent stem cells for cartilage regeneration in CLAWN miniature pig osteochondral replacement model. Regenerat. Therapy 9, 58–70. https://doi.org/10.1016/j.reth.2018.06.003.

Villa-Diaz, L.G., Brown, S.E., Liu, Y., Ross, A.M., Lahann, J., Parent, J.M., Krebsbach, P. H., 2012. Derivation of Mesenchymal Stem Cells from Human Induced Pluripotent Stem Cells Cultured on Synthetic Substrates. STEM CELLS 30 (6), 1174–1181. https://doi.org/10.1002/stem.1084.

von der Mark, K., Gauss, V., von der Mark, H., Müller, P., 1971. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. J. R. & Swoveland. P. New Engl. J. Med 173, 397–399.

Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., 2008. Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process. PLoS ONE 3, 2213. Doi: 10.1371/journal.pone.0002213.

Wakitani, Shigeyuki, Okabe, Takahiro, Horibe, Shuji, Mitsuoka, Tomoki, Saito, Masanobu, Koyama, Tsuyoshi, Nawata, Masashi, Tensho, Keiji, Kato, Hiroyuki, Uematsu, Kota, Kuroda, Ryosuke, Kurosaka, Masahiro,Yoshiya, Shinichi, Hattori, Koji, Ohgushi, Hajime, 2011. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J. Tissue Eng.Regen. Med. 5 (2), 146–150. https://doi.org/10.1002/term.299.

Xu, Huaigeng, Wang, Bo, Ono, Miyuki, Kagita, Akihiro, Fujii, Kaho, Sasakawa, Noriko, Ueda, Tatsuki, Gee, Peter, Nishikawa, Misato, Nomura, Masaki, Kitaoka, Fumiyo, Takahashi, Tomoko, Okita, Keisuke, Yoshida, Yoshinori, Kaneko, Shin, Hotta, Akitsu, 2019. Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell 24 (4), 566–578.e7. https://doi. org/10.1016/j.stem.2019.02.005.

Xu, X., Shi, D., Liu, Y., Yao, Y., Dai, J., Xu, Z., Chen, D., Teng, H., Jiang, Q., 2017. In vivo repair of full-thickness cartilage defect with human iPSC-derived mesenchymal progenitor cells in a rabbit model. Exp. Therapeut. Med. 14, 239–245. Doi: 10.3892/ etm.2017.4474.

Yamashita, Akihiro, Morioka, Miho, Yahara, Yasuhito, Okada, Minoru,Kobayashi, Tomohito, Kuriyama, Shinichi, Matsuda, Shuichi, Tsumaki, Noriyuki, 2015. Generation of Scaffoldless Hyaline Cartilaginous Tissue from Human iPSCs. Stem Cell Rep. 4 (3), 404–418. https://doi.org/10.1016/j.stemcr.2015.01.016.

Yin, Heyong, Wang, Yu, Sun, Zhen, Sun, Xun, Xu, Yichi, Li, Pan, Meng, Haoye, Yu, Xiaoming, Xiao, Bo, Fan, Tian, Wang, Yiguo, Xu, Wenjing, Wang, Aiyuan,Guo, Quanyi, Peng, Jiang, Lu, Shibi, 2016b. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater. 33, 96–109. https://doi.org/10.1016/j.actbio.2016.01.024.

Yin, Perry T., Han, Edward, Lee, Ki-Bum, 2016a. Engineering Stem Cells for Biomedical Applications. Adv. Healthcare Mater. 5 (1), 10–55. https://doi.org/10.1002/ adhm.201400842.

Yurie, H., Ikeguchi, R., Aoyama, T., Kaizawa, Y., Tajino, J., Ito, A., Ohta, S., Oda, H., Takeuchi, H., Akieda, S., Tsuji, M., Nakayama, K., Matsuda, S., 2017. The efficacy of a scaffold-free bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE 12. Doi: 10.1371/journal. pone.0171448.

Zhang, Hongji, Voytik-Harbin, Sherry, Brookes, Sarah, Zhang, Lujuan, Wallace, Joseph, Parker, Noah, Halum, Stacey, 2018. Use of autologous adipose-derived mesenchymal stem cells for creation of laryngeal cartilage: ASCs for Creation of Laryngeal Cartilage. Laryngoscope 128 (4), E123–E129. https://doi.org/10.1002/lary.26980.

Zhang, Liangming, Su, Peiqiang, Xu, Caixia, Yang, Junlin, Yu, Weihua,Huang, Dongsheng, 2010. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol. Lett. 32 (9), 1339–1346. https://doi.org/10.1007/s10529-010-0293-x.

Zhang, Weixiang, Zhu, Yun, Li, Jia, Guo, Quanyi, Peng, Jiang, Liu, Shichen, Yang, Jianhua, Wang, Yu, 2016. Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering. Tissue Eng. Part B: Rev. 22 (3), 193–207. https://doi.org/10.1089/ten.teb.2015.0290.

Zhao, Chengzhu, Ikeya, Makoto, 2018. Generation and Applications of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Int. 2018, 1–8. https://doi.org/10.1155/2018/9601623.

Zhu, Yanxia, Wu, Xiaomin, Liang, Yuhong, Gu, Hongsheng, Song, Kedong, Zou, Xuenong, Zhou, Guangqian, 2016. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnol. 16 (1) https:// doi.org/10.1186/s12896-016-0306-5.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る