リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Piezo1 activation using Yoda1 inhibits macropinocytosis in A431 human epidermoid carcinoma cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Piezo1 activation using Yoda1 inhibits macropinocytosis in A431 human epidermoid carcinoma cells

Kuriyama, Masashi Hirose, Hisaaki Masuda, Toshihiro Shudou, Masachika Arafiles, Jan Vincent V. Imanishi, Miki Maekawa, Masashi Hara, Yuji Futaki, Shiroh 京都大学 DOI:10.1038/s41598-022-10153-8

2022

概要

Macropinocytosis is a type of endocytosis accompanied by actin rearrangement-driven membrane deformation, such as lamellipodia formation and membrane ruffling, followed by the formation of large vesicles, macropinosomes. Ras-transformed cancer cells efficiently acquire exogenous amino acids for their survival through macropinocytosis. Thus, inhibition of macropinocytosis is a promising strategy for cancer therapy. To date, few specific agents that inhibit macropinocytosis have been developed. Here, focusing on the mechanosensitive ion channel Piezo1, we found that Yoda1, a Piezo1 agonist, potently inhibits macropinocytosis induced by epidermal growth factor (EGF). The inhibition of ruffle formation by Yoda1 was dependent on the extracellular Ca²⁺ influx through Piezo1 and on the activation of the calcium-activated potassium channel KCa3.1. This suggests that Ca²⁺ ions can regulate EGF-stimulated macropinocytosis. We propose the potential for macropinocytosis inhibition through the regulation of a mechanosensitive channel activity using chemical tools.

この論文で使われている画像

参考文献

1. Swanson, J. A. & Watts, C. Macropinocytosis. Trends Cell Biol. 5, 424–428. https://d

​ oi.o

​ rg/1​ 0.1​ 016/S​ 0962-8​ 924(00)8​ 9101-1 (1995).

2. Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9, 639–649. https://​doi.​org/​10.​1038/​

nrm24​47 (2008).

3. Lim, J. P. & Gleeson, P. A. Macropinocytosis: An endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836–843.

https://​doi.​org/​10.​1038/​icb.​2011.​20 (2011).

4. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44. https://​doi.​org/​10.​1038/​natur​e01451

(2003).

5. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637.

https://​doi.​org/​10.​1038/​natur​e12138 (2013).

6. Yoshida, S., Pacitto, R., Inoki, K. & Swanson, J. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol. Life Sci. 75,

1227–1239. https://​doi.​org/​10.​1007/​s00018-​017-​2710-y (2018).

7. Song, S. J., Zhang, Y. N., Ding, T. T., Ji, N. & Zhao, H. The dual role of macropinocytosis in cancers: Promoting growth and inducing methuosis to participate in anticancer therapies as targets. Front. Oncol. 10, 570108. https://​doi.​org/​10.​3389/​fonc.​2020.​570108

(2021).

8. Desai, A. S., Hunter, M. R. & Kapustin, A. N. Using macropinocytosis for intracellular delivery of therapeutic nucleic acids to

tumour cells. Philos. Trans. R. Soc. B 374, 20180156. https://​doi.​org/​10.​1098/​rstb.​2018.​0156 (2019).

9. Futaki, S., Arafiles, J. V. V. & Hirose, H. Peptide-assisted intracellular delivery of biomacromolecules. Chem. Lett. 49, 1088–1094.

https://​doi.​org/​10.​1246/​cl.​200392 (2020).

10. Doodnauth, S. A., Grinstein, S. & Maxson, M. E. Constitutive and stimulated macropinocytosis in macrophages: Roles in immunity

and in the pathogenesis of atherosclerosis. Philos. Trans. R. Soc. B 374, 20180147. https://​doi.​org/​10.​1098/​rstb.​2018.​0147 (2019).

11. Swanson, J. A. Phorbol esters stimulate macropinocytosis and solute flow through macrophages. J. Cell Sci. 94, 135–142 (1989).

12. Tanaka, G. et al. CXCR4 stimulates macropinocytosis: Implications for cellular uptake of arginine-rich cell-penetrating peptides

and HIV. Chem. Biol. 19, 1437–1446. https://​doi.​org/​10.​1016/j.​chemb​iol.​2012.​09.​011 (2012).

13. Pacitto, R., Gaeta, I., Swanson, J. A. & Yoshida, S. CXCL12-induced macropinocytosis modulates two distinct pathways to activate

mTORC1 in macrophages. J. Leukocyte Biol. 101, 683–692. https://​doi.​org/​10.​1189/​jlb.​2A0316-​141RR (2017).

14. Yoshida, S., Pacitto, R., Sesi, C., Kotula, L. & Swanson, J. A. Dorsal ruffles enhance activation of Akt by growth factors. J. Cell Sci.

131, 220517. https://​doi.​org/​10.​1242/​jcs.​220517 (2018).

15. Egami, Y., Taguchi, T., Maekawa, M., Arai, H. & Araki, N. Small GTPases and phosphoinositides in the regulatory mechanisms of

macropinosome formation and maturation. Front. Physiol. 5, 374. https://​doi.​org/​10.​3389/​fphys.​2014.​00374 (2014).

16. Canton, J. et al. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in

macrophages. Nat. Commun. 7, 11284. https://​doi.​org/​10.​1038/​ncomm​s11284 (2016).

17. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60.

https://​doi.​org/​10.​1126/​scien​ce.​11932​70 (2010).

18. Syeda, R. et al. Piezo1 channels are inherently mechanosensitive. Cell Rep. 17, 1739–1746. https://​doi.​org/​10.​1016/j.​celrep.​2016.​

10.​033 (2016).

19. Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. Elife 4, e07369. https://​doi.​org/​10.​7554/​eLife.​

07369 (2015).

20. Botello-Smith, W. M. et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1.

Nat. Commun. 10, 4503. https://​doi.​org/​10.​1038/​s41467-​019-​12501-1 (2019).

21. Maekawa, M. et al. Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis. Proc. Natl. Acad. Sci. U.S.A. 111, E978–E987. https://​doi.​org/​10.​1073/​pnas.​13110​29111 (2014).

22. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308. https://​doi.​org/​10.​1038/​nprot.​

2013.​143 (2013).

23. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300. https://​doi.​org/​10.​1038/​

natur​e12354 (2013).

24. Bloomfield, G. & Kay, R. R. Uses and abuses of macropinocytosis. J. Cell Sci. 129, 2697–2705. https://​doi.​org/​10.​1242/​jcs.​176149

(2016).

25. Isogai, T. et al. Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J. Cell Sci. 128,

3796–3810. https://​doi.​org/​10.​1242/​jcs.​176768 (2015).

26. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth-factor

induced membrane ruffling. Cell 70, 401–410. https://​doi.​org/​10.​1016/​0092-​8674(92)​90164-8 (1992).

27. Koivusalo, M. et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188, 547–563. https://​doi.​org/​10.​1083/​jcb.​20090​8086 (2010).

28. Ivanov, A. I. Pharmacological inhibition of endocytic pathways: Is it specific enough to be useful?. Methods Mol. Biol. 440, 15–33.

https://​doi.​org/​10.​1007/​978-1-​59745-​178-9_2 (2008).

29. Grimmer, S., van Deurs, B. & Sandvig, K. Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J. Cell Sci.

115, 2953–2962. https://​doi.​org/​10.​1242/​jcs.​115.​14.​2953 (2002).

30. Ridone, P. et al. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters. J. Gen. Physiol.

152, e201912515. https://​doi.​org/​10.​1085/​jgp.​20191​2515 (2020).

31. Maekawa, M. & Fairn, G. D. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128, 1422–1433. https://​doi.​org/​10.​1242/​jcs.​164715 (2015).

32. Wang, S. P. et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin.

Investig. 126, 4527–4536. https://​doi.​org/​10.​1172/​Jci87​343 (2016).

33. Mendoza, S. A. et al. TRPV4-mediated endothelial C

­ a2+ influx and vasodilation in response to shear stress. Am. J. Physiol. Heart

C 298, H466–H476. https://​doi.​org/​10.​1152/​ajphe​art.​00854.​2009 (2010).

34. Cahalan, S. M. et al. Piezo1 links mechanical forces to red blood cell volume. Elife 4, e07370. https://​doi.​org/​10.​7554/​eLife.​07370

(2015).

35. Swanson, J. A. & Yoshida, S. Macropinosomes as units of signal transduction. Philos. Trans. R. Soc. B 374, 20180157. https://​doi.​

org/​10.​1098/​rstb.​2018.​0157 (2019).

36. Srivastava, S. et al. The phosphatidylinositol 3-phosphate phosphatase myotubularin-related protein 6 (MTMR6) is a negative

regulator of the ­Ca2+-activated ­K+ channel KCa3.1. Mol. Cell Biol. 25, 3630–3638. https://​doi.​org/​10.​1128/​Mcb.​25.9.​3630-​3638.​

2005 (2005).

Scientific Reports |

(2022) 12:6322 |

https://doi.org/10.1038/s41598-022-10153-8

13

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

37. Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl.

Acad. Sci. U.S.A. 104, 3793–3798. https://​doi.​org/​10.​1073/​pnas.​06117​33104 (2007).

38. Maekawa, M. & Fairn, G. D. Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. 127,

4801–4812. https://​doi.​org/​10.​1242/​jcs.​150524 (2014).

39. Sankaranarayanan, A. et al. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels,

potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol. Pharmacol. 75, 281–295.

https://​doi.​org/​10.​1124/​mol.​108.​051425 (2009).

40. Palm, W. Metabolic functions of macropinocytosis. Philos. Trans. R. Soc. B 374, 20180285. https://​doi.​org/​10.​1098/​rstb.​2018.​0285

(2019).

41. Stow, J. L., Hung, Y. & Wall, A. A. Macropinocytosis: Insights from immunology and cancer. Curr. Opin. Cell Biol. 65, 131–140.

https://​doi.​org/​10.​1016/j.​ceb.​2020.​06.​005 (2020).

42. Zhang, Y. J. & Commisso, C. Macropinocytosis in cancer: A complex signaling network. Trends Cancer 5, 332–334. https://​doi.​

org/​10.​1016/j.​trecan.​2019.​04.​002 (2019).

43. Lin, H. P. et al. Identification of novel macropinocytosis inhibitors using a rational screen of Food and Drug Administrationapproved drugs. Br. J. Pharmacol. 175, 3640–3655. https://​doi.​org/​10.​1111/​bph.​14429 (2018).

44. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated

endocytosis in mammalian cells. Traffic 1, 161–171. https://​doi.​org/​10.​1034/j.​1600-​0854.​2000.​010208.x (2000).

45. Araki, N., Johnson, M. T. & Swanson, J. A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and

phagocytosis by macrophages. J. Cell Biol. 135, 1249–1260. https://​doi.​org/​10.​1083/​jcb.​135.5.​1249 (1996).

46. Liu, Y. S. et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase.

Chem. Biol. 12, 99–107. https://​doi.​org/​10.​1016/j.​chemb​iol.​2004.​11.​009 (2005).

47. Dai, X. Q. et al. Inhibition of TRPP3 channel by amiloride and analogs. Mol. Pharmacol. 72, 1576–1585. https://​doi.​org/​10.​1124/​

mol.​107.​037150 (2007).

48. Borbiro, I., Badheka, D. & Rohacs, T. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting

membrane phosphoinositides. Sci. Signal. 8, 15. https://​doi.​org/​10.​1126/​scisi​gnal.​20056​67 (2015).

49. Buyan, A. et al. Piezo1 forms specific, functionally important interactions with phosphoinositides and cholesterol. Biophys. J. 119,

1683–1697. https://​doi.​org/​10.​1016/j.​bpj.​2020.​07.​043 (2020).

50. Cox, C. D. et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat.

Commun. 7, 10366. https://​doi.​org/​10.​1038/​ncomm​s10366 (2016).

51. Zhang, J. L. et al. PIEZO1 functions as a potential oncogene by promoting cell proliferation and migration in gastric carcinogenesis.

Mol. Carcinogen 57, 1144–1155. https://​doi.​org/​10.​1002/​mc.​22831 (2018).

52. Tsai, F. C. et al. A polarized ­Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat. Cell Biol. 16,

133–144. https://​doi.​org/​10.​1038/​ncb29​06 (2014).

Acknowledgements

This work was supported by JST CREST (Grant Number JPMJCR18H5 to S.F.). pGFP-C1-PLCδ-PH and

pmCherry-C1-D4H were kind gifts from Dr. Gregory Fairn (St. Michael’s Hospital, Toronto, Canada)31.

Author contributions

H.H. conceived and directed the project, designed the experiments, established the Piezo1 knockout A431 cells

with the help of Y.H., and analyzed the data. M.K. designed and performed the experiments, and analyzed the

data. T.M., J.V.V.A., and M.I. contributed to analysis for flow cytometry, Rac1 pulldown assay, and plasmid construction for Piezo1 mutants, respectively. M.S. and M.M. performed the scanning electron microscopy observations. Y.H. contributed to construction of Piezo1-related plasmids and establishment of the Piezo1 knockout

cell line. M.K. and H.H. wrote the original manuscript. S.F. supervised the project and wrote the manuscript

with H.H., M.K and M.M. All authors discussed and commented on the manuscript. M.K. and H.H. contributed

equally to this work.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​10153-8.

Correspondence and requests for materials should be addressed to H.H. or S.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022, corrected publication 2022

Scientific Reports |

Vol:.(1234567890)

(2022) 12:6322 |

https://doi.org/10.1038/s41598-022-10153-8

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る