リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of FLOWERING LOCUS C 5 in Brassica rapa L.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of FLOWERING LOCUS C 5 in Brassica rapa L.

Akter, Ayasha Kakizaki, Tomohiro Itabashi, Etsuko Kunita, Kohei Shimizu, Motoki Akter, Mst. Arjina Mehraj, Hasan Okazaki, Keiichi Dennis, Elizabeth S. Fujimoto, Ryo 神戸大学

2023.07.19

概要

Brassica rapa L., which includes Chinese cabbage, turnip, and pak choi, has more complex flowering time regulation than does Arabidopsis thaliana due to the presence of multiple paralogous flowering time genes. FLOWERING LOCUS C (FLC) is one of the key genes regulating the flowering time, and B. rapa has four FLC paralogs. BrFLC₅ on the reference genome is deemed a pseudogene because of a mutation (from G to A) in the splice site of the third intron, but there are some accessions with a G nucleotide in the splice site. In this study, we genotyped 310 B. rapa accessions and found that 19 had homozygous and 81 had heterozygous putative functional BrFLC₅ alleles. Accessions of turnip showed the highest proportion with a functional BrFLC₅ allele. BrFLC₅ acts as a floral repressor when overexpressed in A. thaliana. The BrFLC₅ expression level varied in pre-vernalized plants, and this transcriptional variation was not associated with the G/A polymorphism in the third intron. Three accessions having a higher BrFLC₅ expression in pre-vernalized plants had a 584-bp insertion in the promoter region. Many regions homologous to this 584-bp sequence are present in the B. rapa genome, and this 584-bp inserted region has tandem duplications of an AT-rich sequence in its central region. The possibility that a high expression of a functional BrFLC₅ could contribute to producing premature bolting-resistant lines in B. rapa vegetables is discussed.

この論文で使われている画像

参考文献

Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R (2021) Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci

11:619417. https://​doi.​org/​10.​3389/​fpls.​2020.​619417

Akter A, Miyazaki J, Shea DJ et al (2020) Gene expression analysis

in response to vernalization in Chinese cabbage (Brassica rapa

L.). Hort J 89:268–277. https://​doi.​org/​10.​2503/​hortj.​UTD-​150

Akter A, Nishida N, Takada S, Itabashi E, Osabe K, Shea DJ, Fujimoto R (2018) Genetic and epigenetic regulation of vernalization in Brassicaceae. In: El-Esawi MA (ed) Brassica germplasm–characterization, breeding and utilization. IntechOpen,

London, pp 75–94

Akter A, Takahashi S, Deng W et al (2019) The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L. DNA

Res 26:433–443. https://​doi.​org/​10.​1093/​dnares/​dsz021

Belser C, Istace B, Denis E et al (2018) Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants 4:879–887. https://​doi.​org/​10.​1038/​

s41477-​018-​0289-4

Calderwood A, Lloyd A, Hepworth J et al (2021) Total FLC transcript dynamics from divergent paralogue expression explains

flowering diversity in Brassica napus. New Phytol 229:3534–

3548. https://​doi.​org/​10.​1111/​nph.​17131

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant

J 16:735–743. https://​doi.​org/​10.​1046/j.​1365-​313x.​1998.​00343.x

Fujimoto R, Sasaki T, Nishio T (2006) Characterization of DNA

methyltransferase genes in Brassica rapa. Genes Genet Syst

81:235–242. https://​doi.​org/​10.​1266/​ggs.​81.​235

Itabashi E, Osabe K, Fujimoto R, Kakizaki T (2018) Epigenetic

regulation of agronomical traits in Brassicaceae. Plant Cell

Rep 37:87–101. https://​doi.​org/​10.​1007/​s00299-​017-​2223-z

Itabashi E, Shea DJ, Fukino N, Fujimoto R, Okazaki K, Kakizaki

T, Ohara T (2019) Comparison of cold responses for orthologs

of cabbage vernalization-related genes. Hort J 88:462–470.

https://​doi.​org/​10.​2503/​hortj.​UTD-​059

Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000)

Molecular analysis of FRIGIDA, a major determinant of natural

variation in Arabidopsis flowering time. Science 290:344–347.

https://​doi.​org/​10.​1126/​scien​ce.​290.​5490.​344

Mol Breeding

(2023) 43:58 Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, Matsumoto

S (2011) Identification of quantitative trait loci controlling late

bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6

gou. Breed Sci 61:151–159. https://​doi.​org/​10.​1270/​jsbbs.​61.​151

Kawamura K, Kawanabe T, Shimizu M et al (2016) Genetic distance of

inbred lines of Chinese cabbage and its relationship to heterosis.

Plant Gene 5:1–7. https://​doi.​org/​10.​1016/j.​plgene.​2015.​10.​003

Kawanabe T, Osabe K, Itabashi E, Okazaki K, Dennis ES, Fujimoto R

(2016) Development of primer sets that can verify the enrichment

of histone modifications, and their application to examining vernalization-mediated chromatin changes in Brassica rapa L. Genes

Genet Syst 91:1–10. https://​doi.​org/​10.​1266/​ggs.​15-​00058

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced

aligner with low memory requirements. Nat Methods 12:357–

360. https://​doi.​org/​10.​1038/​nmeth.​3317

Kim SY, Park BS, Kwon SJ et al (2007) Delayed flowering time

in Arabidopsis and Brassica rapa by the overexpression of

FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell

Rep 26:327–336. https://​doi.​org/​10.​1007/​s00299-​006-​0243-1

Kitamoto N, Yui S, Nishikawa K, Takahata Y, Yokoi S (2014) A

naturally occurring long insertion in the first intron in the

Brassica rapa FLC2 gene causes delayed bolting. Euphytica

196:213–223. https://​doi.​org/​10.​1007/​s10681-​013-​1025-9

Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage

map of EST-based SNP markers for identification of candidate

genes controlling flowering time and leaf morphological traits.

DNA Res 16:311–323. https://​doi.​org/​10.​1093/​dnares/​dsp020

Li P, Su T, Zhao X et al (2021) Assembly of the non-heading pak

choi genome and comparison with the genomes of heading

Chinese cabbage and the oilseed yellow sarson. Plant Biotechnol J 19:966–976. https://​doi.​org/​10.​1111/​pbi.​13522

Li Y, Liu GF, Ma LM et al (2020) A chromosome-level reference

genome of non-heading Chinese cabbage [Brassica campestris

(syn. Brassica rapa) ssp. chinensis]. Hortic Res 7:212. https://​

doi.​org/​10.​1038/​s41438-​020-​00449-z

Lo CC, Chain PSG (2014) Rapid evaluation and quality control of

next generation sequencing data with FaQCs. BMC Bioinform

15:366. https://​doi.​org/​10.​1186/​s12859-​014-​0366-2

Lv H, Miyaji N, Osabe K, Akter A, Mehraj H, Shea DJ, Fujimoto

R (2020) The importance of genetic and epigenetic research in

the Brassica vegetables in the face of climate change. In: Kole

C (ed) Genomic designing of climate-smart vegetable crops.

Springer, Cham, pp 161–255

Mehraj H, Takahashi S, Miyaji N et al (2021) Characterization of histone H3 lysine 4 and 36 tri-methylation in Brassica rapa L. Front

Plant Sci 12:659634. https://​doi.​org/​10.​3389/​fpls.​2021.​659634

Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326.

https://​doi.​org/​10.​1093/​nar/8.​19.​4321

Qi X, An H, Ragsdale AP, Hall TE, Gutenkunst RN, Pires JC, Barker

MS (2017) Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Mol Ecol 26:3373–

3388. https://​doi.​org/​10.​1111/​mec.​14131

Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC

(2002) Characterization and effects of the replicated flowering time

Page 11 of 11 58

gene FLC in Brassica rapa. Genetics 162:1457–1468. https://​doi.​

org/​10.​1093/​genet​ics/​162.3.​1457

Shea DJ, Itabashi E, Takada S, Fukai E, Kakizaki T, Fujimoto R,

Okazaki K (2018) The role of FLOWERING LOCUS C in

vernalization of Brassica: the importance of vernalization

research in the face of climate change. Crop Pasture Sci 69:30–

39. https://​doi.​org/​10.​1071/​CP164​68

Shea DJ, Nishida N, Takada S et al (2019) Long noncoding RNAs

in Brassica rapa L. following vernalization. Sci Rep 9:9302.

https://​doi.​org/​10.​1038/​s41598-​019-​45650-w

Su T, Wang W, Li P et al (2018) A genomic variation map provides

insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis) selection. Mol Plant 11:1360–1376.

https://​doi.​org/​10.​1016/j.​molp.​2018.​08.​006

Takada S, Akter A, Itabashi E et al (2019) The role of FRIGIDA

and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables. Sci Rep 9:13843. https://​doi.​org/​10.​

1038/​s41598-​019-​50122-2

Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat

Biotechnol 28:511–515. https://​doi.​org/​10.​1038/​nbt.​1621

Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039.

https://​doi.​org/​10.​1038/​ng.​919

Xi X, Wei K, Gao B et al (2018) BrFLC5: a weak regulator of flowering time in Brassica rapa. Theor Appl Genet 131:2107–2116.

https://​doi.​org/​10.​1007/​s00122-​018-​3139-x

Yang TJ, Kim JS, Kwon SJ et al (2006) Sequence-level analysis

of the diploidization process in the triplicated FLOWERING

LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347.

https://​doi.​org/​10.​1105/​tpc.​105.​040535

Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW

(2009) A naturally occurring splicing site mutation in the Brassica

rapa FLC1 gene is associated with variation in flowering time. J

Exp Bot 60:1299–1308. https://​doi.​org/​10.​1093/​jxb/​erp010

Zhang L, Cai X, Wu J et al (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome

conformation capture technologies. Hortic Res 5:50. https://​

doi.​org/​10.​1038/​s41438-​018-​0071-9

Zhang Z, Guo J, Cai X et al (2022) Improved reference genome

annotation of Brassica rapa by Pacific Biosciences RNA

sequencing. Front Plant Sci 13:841618. https://​doi.​org/​10.​

3389/​fpls.​2022.​841618

Zhao J, Kulkarni V, Liu N, Del Carpio DP, Bucher J, Bonnema G

(2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene

for a vernalization response QTL in Brassica rapa. J Exp Bot

61:1817–1825. https://​doi.​org/​10.​1093/​jxb/​erq048

Publisher’s note Springer Nature remains neutral with regard

to jurisdictional claims in published maps and institutional

affiliations.

Vol.: (0123456789)

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る