リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Contactless mass transfer for intradroplet extraction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Contactless mass transfer for intradroplet extraction

Asano, Shusaku 浅野, 周作 アサノ, シュウサク Takahashi, Yu タカハシ, ユウ Maki, Taisuke 牧, 泰輔 マキ, タイスケ Muranaka, Yosuke 村中, 陽介 ムラナカ, ヨウスケ Cherkasov, Nikolay Mae, Kazuhiro 前, 一廣 マエ, カズヒロ 九州大学

2020.05.06

概要

This study demonstrates the possibility of “contactless” mass transfer between two aqueous slugs (droplets) separated by an oil slug in Taylor flow inside milli-channels. Separation of the alternating

この論文で使われている画像

参考文献

1. Kashid, M. N., Harshe, Y. M. & Agar, D. W. Liquid-liquid slug flow in a capillary: An alternative to suspended drop or film

contactors. Ind. Eng. Chem. Res. 46, 8420–8430 (2007).

2. Sebastian, V., Smith, C. D. & Jensen, K. F. Shape-controlled continuous synthesis of metal nanostructures. Nanoscale 8, 7534–7543

(2016).

3. Matsuoka, A., Noishiki, K. & Mae, K. Experimental study of the contribution of liquid film for liquid-liquid Taylor flow mass

transfer in a microchannel. Chem. Eng. Sci. 155, 306–313 (2016).

4. Cherkasov, N., Denissenko, P., Deshmukh, S. & Rebrov, E. V. Gas-liquid hydrogenation in continuous flow – The effect of mass

transfer and residence time in powder packed-bed and catalyst-coated reactors. Chem. Eng. J. 379, 122292 (2020).

5. Cybulski, O., Jakiela, S. & Garstecki, P. Whole Teflon valves for handling droplets. Lab Chip 16, 2198–2210 (2016).

6. Wang, K., Li, L., Xie, P. & Luo, G. Liquid-liquid microflow reaction engineering. React. Chem. Eng. 2, 611–627 (2017).

7. Wang, K. & Luo, G. Microflow extraction: A review of recent development. Chem. Eng. Sci. 169, 18–33 (2017).

8. Shen, Y. et al. Multistage extraction platform for highly efficient and fully continuous purification of nanoparticles. Nanoscale 9,

7703–7707 (2017).

9. Aoki, N., Tanigawa, S. & Mae, K. Design and operation of gas–liquid slug flow in miniaturized channels for rapid mass transfer.

Chem. Eng. Sci. 66, 6536–6543 (2011).

10. Liu, D. et al. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with

tunable properties. Adv. Mater. 27, 2298–2304 (2015).

11. Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science (80-.)

359, 429–434 (2018).

12. Hawbaker, N., Wittgrove, E., Christensen, B., Sach, N. & Blackmond, D. G. Dispersion in Compartmentalized Flow Systems:

Influence of Flow Patterns on Reactivity. Org. Process Res. Dev. 20, 465–473 (2016).

13. Ferraro, D. et al. Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand.

Lab Chip 19, 136–146 (2019).

14. Zheng, B., Tice, J. D. & Ismagilov, R. F. Formation of droplets of alternating composition in microfluidic channels and applications

to indexing of concentrations in droplet-based assays. Anal. Chem. 76, 4977–4982 (2004).

Scientific Reports |

(2020) 10:7685 | https://doi.org/10.1038/s41598-020-64520-4

www.nature.com/scientificreports/

www.nature.com/scientificreports

15. Gai, H. et al. Extraction of 1-amino-2-Naphthol-4-Sulfonic acid from wastewater using trioctylamine (N, N-dioctyloctan-1-amine)

in methyl isobutyl ketone. J. Clean. Prod. 201, 774–782 (2018).

16. Kumar, S. et al. Extraction of uranium from simulated highly active feed in a micromixer-settler with 30% TBP and 36% TiAP

solvents. J. Radioanal. Nucl. Chem. 311, 2111–2116 (2017).

17. Nichols, K. P., Pompano, R. R., Li, L., Gelis, A. V. & Ismagilov, R. F. Toward mechanistic understanding of nuclear reprocessing

chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing.

J. Am. Chem. Soc. 133, 15721–15729 (2011).

18. Hallett, A. J., Kwant, G. J. & De Vries, J. G. Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact

separator with the aid of cinchona-based chiral host compounds. Chem. - A Eur. J 15, 2111–2120 (2009).

19. Sun, J., Ju, J., Ji, L., Zhang, L. & Xu, N. Synthesis of biodiesel in capillary microreactors. Ind. Eng. Chem. Res. 47, 1398–1403 (2008).

20. Muranaka, Y., Nakagawa, H., Masaki, R., Maki, T. & Mae, K. Continuous 5-hydroxymethylfurfural production from

monosaccharides in a microreactor. Ind. Eng. Chem. Res. 56, 10998–11005 (2017).

21. Dittrich, P. S. & Manz, A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210–218 (2006).

22. Song, W., Lin, G., Ge, J., Fassbender, J. & Makarov, D. Encoding Microreactors with Droplet Chains in Microfluidics. ACS Sensors 2,

1839–1846 (2017).

23. Cherkasov, N., Expósito, A. J., Bai, Y. & Rebrov, E. V. Counting bubbles: Precision process control of gas-liquid reactions in flow with

an optical inline sensor. React. Chem. Eng 4, 112–121 (2019).

24. Kurt, S. K., Vural Gürsel, I., Hessel, V., Nigam, K. D. P. & Kockmann, N. Liquid-liquid extraction system with microstructured coiled

flow inverter and other capillary setups for single-stage extraction applications. Chem. Eng. J. 284, 764–777 (2016).

25. Günther, A., Khan, S. A., Thalmann, M., Trachsel, F. & Jensen, K. F. Transport and reaction in microscale segmented gas–liquid flow.

Lab Chip 4, 278–286 (2004).

26. Khan, S. A., Günther, A., Schmidt, M. A. & Jensen, K. F. Microfluidic synthesis of colloidal silica. Langmuir 20, 8604–8611 (2004).

27. Huerre, A. et al. Droplets in Microchannels: Dynamical Properties of the Lubrication Film. Phys. Rev. Lett. 115, 3–7 (2015).

28. Li, Q. & Angeli, P. Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels. Chem.

Eng. J. 328, 717–736 (2017).

29. Liu, D., Wang, K., Wang, Y., Wang, Y. & Luo, G. A simple online phase separator for the microfluidic mass transfer studies. Chem.

Eng. J. 325, 342–349 (2017).

30. Bretherton, F. P. The motion of long bubbles in tubes. J. Fluid Mech 10, 166 (1961).

31. Jakiela, S., Makulska, S., Korczyk, P. M. & Garstecki, P. Speed of flow of individual droplets in microfluidic channels as a function of

the capillary number, volume of droplets and contrast of viscosities. Lab Chip 11, 3603–3608 (2011).

32. Baret, J. C. Surfactants in droplet-based microfluidics. Lab Chip 12, 422–433 (2012).

33. Kihara, T., Obata, H. & Hirano, H. Quantitative visualization of fluid mixing in slug flow for arbitrary wall-shaped microchannel

using Shannon entropy. Chem. Eng. Sci. 200, 225–235 (2019).

34. Su, Y., Chen, G., Zhao, Y. & Yuan, Q. Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel.

Aiche J. 55, 1948–1958 (2009).

35. Carroll, R. M. & Gupta, N. R. Inertial and surfactant effects on the steady droplet flow in cylindrical channels. Phys. Fluids 26,

(2014).

36. Hodges, S. R., Jensen, O. E. & Rallison, J. M. The motion of a viscous drop through a cylindrical tube. J. Fluid Mech. 501, 279–301

(2004).

37. Afkhami, S., Leshansky, A. M. & Renardy, Y. Numerical investigation of elongated drops in a microfluidic T-junction. Phys. Fluids

23, (2011).

38. Jakiela, S., Korczyk, P. M., Makulska, S., Cybulski, O. & Garstecki, P. Discontinuous transition in a laminar fluid flow: A change of

flow topology inside a droplet moving in a micron-size channel. Phys. Rev. Lett. 108, 1–5 (2012).

39. Yao, C., Zhao, Y. & Chen, G. Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and

applications. Chem. Eng. Sci. 189, 340–359 (2018).

40. Kashid, M. N., Renken, A. & Kiwi-Minsker, L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors. Chemical

Engineering Science 66, 3876–3897 (2011).

41. Zhang, Q., Liu, H., Zhao, S., Yao, C. & Chen, G. Hydrodynamics and mass transfer characteristics of liquid–liquid slug flow in

microchannels: The effects of temperature, fluid properties and channel size. Chem. Eng. J. 358, 794–805 (2019).

42. Ramji, S., Rakesh, A. & Pushpavanam, S. Modelling mass transfer in liquid-liquid slug flow in a microchannel. Chem. Eng. J. 364,

280–291 (2019).

Acknowledgements

This work was supported by JSPS KAKENHI Grant number 16K14457. S.A. acknowledges the support from

Cooperative Research Program of Network Joint Research Center for Materials and Devices that has been

supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We thank

Prof. Minoru T. Miyahara and Dr. Satoshi Watanabe for the use of the objective lens for interfacial tension

measurements.

Author contributions

S.A. constructed the software and hardware. T.M. and S.A. conceived the project. K.M. managed the project. Y.T.

performed experiments and analysis. Y.M. and S.A. assisted analysis. N.C. made suggestions and discussions on

the sensing system. All authors have discussed results and co-written the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-64520-4.

Correspondence and requests for materials should be addressed to S.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Scientific Reports |

(2020) 10:7685 | https://doi.org/10.1038/s41598-020-64520-4

www.nature.com/scientificreports/

www.nature.com/scientificreports

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

Scientific Reports |

(2020) 10:7685 | https://doi.org/10.1038/s41598-020-64520-4

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る