リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Integrated Flow Emulsion Electrosynthetic System by In Situ Generation of Emulsions, Subsequent Emulsion Electrolysis, and Final Phase Separation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Integrated Flow Emulsion Electrosynthetic System by In Situ Generation of Emulsions, Subsequent Emulsion Electrolysis, and Final Phase Separation

Mikami Rio Shida Naoki 20839972 Atobe Mahito 90291351 横浜国立大学

2022.02.23

概要

In this work, we developed a continuous flow emulsion electrosynthetic system. This new flow system involves 20 kHz ultrasonication for acoustic emulsification of water-insoluble organic amines in an aqueous electrolyte without the use of a surfactant, followed by emulsion electrolysis in the flow microreactor and separation of the emulsion into aqueous and oil product (organic nitriles) phases using a liquid–liquid separator. The 20 kHz ultrasonication provided a stable emulsified solution containing organic amine droplets with a relatively narrow size distribution in the micrometer range. The subsequent emulsion electrolysis in the microreactor yielded the desired nitrile product very effectively. In addition, in a continuous flow operation, the emulsion after the electrolysis was efficiently separated into an aqueous electrolyte and oil product using a liquid–liquid separator. The proposed system is robust, and the desired product was successfully synthesized at the gram scale.

この論文で使われている画像

参考文献

(1)

Barhdadi, R.; Courtinard, C.; Nédélec, J. Y.; Troupel, M. Room-Temperature Ionic

Liquids as New Solvents for Organic Electrosynthesis. The First Examples of Direct or

Nickel-Catalysed Electroreductive Coupling Involving Organic Halides. Chem. Commun.

2003, 3 (12), 1434–1435. https://doi.org/10.1039/b302944a.

(2)

Hapiot, P.; Lagrost, C. Electrochemical Reactivity in Room-Temperature Ionic Liquids.

Chem. Rev. 2008, 108 (7), 2238–2264. https://doi.org/10.1021/cr0680686.

(3)

Zhou, F.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun,

C.; Zhang, X.; Macfarlane, D. R. Electro-Synthesis of Ammonia from Nitrogen at

Ambient Temperature and Pressure in Ionic Liquids. Energy Environ. Sci. 2017, 10 (12),

2516–2520. https://doi.org/10.1039/c7ee02716h.

(4)

Atobe, M.; Yoshida, N.; Sakamoto, K.; Sugino, K.; Fuchigami, T. Preparation of Highly

Aligned Arrays of Conducting Polymer Nanowires Using Templated

Electropolymerization in Supercritical Fluids. Electrochim. Acta 2013, 87, 409–415.

https://doi.org/10.1016/j.electacta.2012.09.032.

(5)

Lin, W. H.; Chang, T. F. M.; Lu, Y. H.; Sato, T.; Sone, M.; Wei, K. H.; Hsu, Y. J.

Supercritical CO2-Assisted Electrochemical Deposition of ZnO Mesocrystals for Practical

Photoelectrochemical Applications. J. Phys. Chem. C 2013, 117 (48), 25596–25603.

https://doi.org/10.1021/jp409607m.

32

(6)

Bartlett, P. N.; Cook, D. A.; George, M. W.; Hector, A. L.; Ke, J.; Levason, W.; Reid, G.;

Smith, D. C.; Zhang, W. Electrodeposition from Supercritical Fluids. Phys. Chem. Chem.

Phys. 2014, 16 (20), 9202–9219. https://doi.org/10.1039/c3cp54955k.

(7)

Toghill, K. E.; Méndez, M. A.; Voyame, P. Electrochemistry in Supercritical Fluids: A

Mini Review. Electrochem. commun. 2014, 44, 27–30.

https://doi.org/10.1016/j.elecom.2014.04.008.

(8)

Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama, S.; Kobayashi, S. Organic Synthesis

inside Particles in Water: Lewis Acid - Surfactant-Combined Catalysts for Organic

Reactions in Water Using Colloidal Dispersions as Reaction Media. J. Am. Chem. Soc.

2000, 122 (30), 7202–7207. https://doi.org/10.1021/ja001420r.

(9)

Li, C. J. Organic Reactions in Aqueous Media with a Focus on Carbon-Carbon Bond

Formations: A Decade Update. Chem. Rev. 2005, 105 (8), 3095–3165.

https://doi.org/10.1021/cr030009u.

(10)

Yoshiyama, A.; Tsubaki, T.; Cheng, P.; Wakamatsu, M.; Okubo, I.; Nonaka, T. Indirect

Electrolysis of Suspensions of Solid Materials. DENKI KAGAKU 1991, 59 (11), 976–980.

(11)

Kado, Y.; Atobe, M.; Nonaka, T. Ultrasonic Effects on Electroorganic Processes - Part 20.

Photocatalytic Oxidation of Aliphatic Alcohols in Aqueous Suspension of TiO2 Powder.

Ultrason. Sonochem. 2001, 8 (2), 69–74. https://doi.org/10.1016/S1350-4177(00)00072-9.

(12)

Chatzi, E. G.; Boutris, C. J.; Kiparissides, C. On-Line Monitoring of Drop Size

Distributions in Agitated Vessels. 2. Effect of Stabilizer Concentration. Ind. Eng. Chem.

Res. 1991, 30 (6), 1307–1313. https://doi.org/10.1021/ie00054a035.

(13)

Nagy, E.; Hadik, P. Three-Phase Mass Transfer: Effect of the Size Distribution. Ind. Eng.

Chem. Res. 2003, 42 (21), 5363–5372. https://doi.org/10.1021/ie030110p.

33

(14)

Gao, J.; Rusling, J. F.; Zhou, D. L. Carbon-Carbon Bond Formation by Electrochemical

Catalysis in Conductive Microemulsions. J. Org. Chem. 1996, 61 (17), 5972–5977.

https://doi.org/10.1021/jo9608477.

(15)

Rusling, J. F.; Zhou, D. L. Electrochemical Catalysis in Microemulsions. Dynamics and

Organic Synthesis. J. Electroanal. Chem. 1997, 439 (1), 89–96.

https://doi.org/10.1016/S0022-0728(97)00374-4.

(16)

Tsakova, V.; Winkels, S.; Schultze, J. W. Anodic Polymerization of 3,4Ethylenedioxythiophene from Aqueous Microemulsions. Electrochim. Acta 2001, 46 (5),

759–768. https://doi.org/10.1016/s0013-4686(00)00643-5.

(17)

Sripriya, R.; Chandrasekaran, M.; Noel, M. Electrochemical Homolytic and Heterolytic

Coupling of Activated Olefins in the Absence and Presence of Benzyl Bromide in

Microemulsion. J. Appl. Electrochem. 2008, 38 (5), 597–603.

https://doi.org/10.1007/s10800-007-9477-z.

(18)

Li, M. K.; Fogler, H. S. Acoustic Emulsification. Part 1. The Instability of the Oil-Water

Interface to Form the Initial Droplets. J. Fluid Mech. 1978, 88 (3), 499–511.

https://doi.org/10.1017/S0022112078002232.

(19)

Li, M. K.; Fogler, H. S. Acoustic Emulsification. Part 2. Breakup of the Large Primary Oil

Droplets in a Water Medium. J. Fluid Mech. 1978, 88 (3), 513–528.

https://doi.org/10.1017/S0022112078002244.

(20)

Reddy, S. R.; Fogler, H. S. Stability Acoustically. J. Phys. Chem. 1980, 84, 1570–1575.

(21)

Sakai, T. Surfactant-Free Emulsions. Curr. Opin. Colloid Interface Sci. 2008, 13 (4), 228–

235. https://doi.org/10.1016/j.cocis.2007.11.013.

34

(22)

Atobe, M.; Ikari, S.; Nakabayashi, K.; Amemiya, F.; Fuchigami, T. Electrochemical

Reaction of Water-Insoluble Organic Droplets in Aqueous Electrolytes Using Acoustic

Emulsification. Langmuir 2010, 26 (11), 9111–9115. https://doi.org/10.1021/la904875g.

(23)

Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Chemistry in Microstructured Reactors;

2004; Vol. 43. https://doi.org/10.1002/anie.200300577.

(24)

Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, T. D. Greener

Approaches to Organic Synthesis Using Microreactor Technology. Chem. Rev. 2007, 107

(6), 2300–2318. https://doi.org/10.1021/cr050944c.

(25)

Yoshida, J. I.; Takahashi, Y.; Nagaki, A. Flash Chemistry: Flow Chemistry That Cannot

Be Done in Batch. Chem. Commun. 2013, 49 (85), 9896–9904.

https://doi.org/10.1039/c3cc44709j.

(26)

Atobe, M.; Tateno, H.; Matsumura, Y. Applications of Flow Microreactors in

Electrosynthetic Processes. Chem. Rev. 2018, 118 (9), 4541–4572.

https://doi.org/10.1021/acs.chemrev.7b00353.

(27)

Pletcher, D.; Green, R. A.; Brown, R. C. D. Flow Electrolysis Cells for the Synthetic

Organic Chemistry Laboratory. Chem. Rev. 2018, 118 (9), 4573–4591.

https://doi.org/10.1021/acs.chemrev.7b00360.

(28)

Noël, T.; Cao, Y.; Laudadio, G. The Fundamentals behind the Use of Flow Reactors in

Electrochemistry. Acc. Chem. Res. 2019, 52 (10), 2858–2869.

https://doi.org/10.1021/acs.accounts.9b00412.

(29)

Shida, N.; Nakamura, Y.; Atobe, M. Electrosynthesis in Laminar Flow Using a Flow

Microreactor. Chem. Rec. 2021, 21 (9), 2164–2177.

https://doi.org/10.1002/tcr.202100016.

35

(30)

Asami, R.; Atobe, M.; Fuchigami, T. Electropolymerization of an Immiscible Monomer in

Aqueous Electrolytes Using Acoustic Emulsification. J. Am. Chem. Soc. 2005, 127 (38),

13160–13161. https://doi.org/10.1021/ja0546931.

(31)

Asami, R.; Fuchigami, T.; Atobe, M. Development of a Novel Environmentally Friendly

Electropolymerization of Water-Insoluble Monomers in Aqueous Electrolytes Using

Acoustic Emulsification. Langmuir 2006, 22 (24), 10258–10263.

https://doi.org/10.1021/la061653h.

(32)

Trasatti, S. Work Function, Electronegativity, and Electrochemical Behaviour of Metals.

III. Electrolytic Hydrogen Evolution in Acid Solutions. J. Electroanal. Chem. 1972, 39

(1), 163–184. https://doi.org/10.1016/S0022-0728(72)80485-6.

36

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る