リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Japan's south foehn on the Toyama Plain: Dynamical or thermodynamical mechanisms?」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Japan's south foehn on the Toyama Plain: Dynamical or thermodynamical mechanisms?

日下, 博幸 Nishi, Akifumi Kakinuma, Ai ドアン, グアン ヴァン Onodera, Taira Endo, Shuhei 筑波大学

2022.06.06

概要

Japanese society has recently taken a greater interest in foehn warming because it has caused record-breaking high temperatures and sudden dam- age to rice crops. This is the first comprehensive climatological study focused on Japan's south foehn, which blows across the Toyama Plain in the Hokuriku region. Climatological analyses, including an objective self- organizing map and subjective analysis of 198 south foehn cases, revealed that ~68.2% of the foehns occurred while an extratropical cyclone was pass- ing through the Sea of Japan. Approximately 19.7% of the remaining foehns blew while an anticyclone covered Japan. Only 5.1% of all foehns occurred during a typhoon, but very high temperatures occurred when typhoons were approaching. Foehns were observed in all seasons but tended to blow more often in spring, when there are many migratory anticyclones and cyclones. Most of the foehns begin at night and end or pause during the day. This is due to the removal of the nocturnal stable layer and the development of a local daytime pressure gradient on the lee side. The dynamical mechanism provides the primary explanation for Japan's south foehn. Surprisingly, the foehns with precipitation on windward mountains slopes accounted for only~19.2% of all cases, with ~40.0% being typhoon cases. Most of these are likely of multiple type; a pure thermodynamical type of foehn is a rare occurrence. Numerical simulations and back trajectory analyses for 76 selected foehn cases revealed that the majority of the air parcels origi- nated from the south and passed straight over the Hida Highlands, between two mountain ranges, as a hybrid type of gap and foehn winds.

この論文で使われている画像

参考文献

Arakawa, S., Yamada, K. and Toya, T. (1982) A study of foehn in the Hokuriku district using the AMeDAS data. Papers in Meteo- rology and Geophysics, 33, 149–163. https://doi.org/10.2467/ mripapers.33.149.

Barry, G.R. (2008) Mountain Weather and Climate, 3rd edition. Cambridge, MA: Cambridge University Press, p. 506. https:// doi.org/10.1017/CBO9780511754753.

Beran, D.W. (1967) Large amplitude lee waves and Chinook winds. Journal of Applied Meteorology, 6, 865–877. https://doi.org/10. 1175/1520-0450(1967)006<0865:LALWAC>2.0.CO;2.

Brinkmann, W. A. R. (1973) A climatological study of strong down- slope winds in the Boulder area. NCAR Cooperative Thesis No.27/INSTARR Occasional Paper No.7, University of Colo- rado, 229 pp.

Brinkmann, W.A.R. (1974) Strong downslope winds at Boulder, Colorado. Monthly Weather Review, 102(8), 592–602. https:// doi.org/10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2.

Cavazos, T. (2000) Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. Journal of Cli- mate, 12(5), 1506–1523. https://doi.org/10.1175/1520-0442 (1999)012<1506:LSCACT>2.0.CO;2.

Cetti, C., Buzzi, M. and Sprenger, M. (2015) Climatology of alpine north foehn. Scientific Reports, 100, 76.

Chen, F. and Dudhia, J. (2001) Coupling an advanced land-sur- face/hydrology model with the Penn State/NCAR MM5 model- ing system. Part I: model description and implementation. Monthly Weather Review, 129(4), 569–585. https://doi.org/10. 1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

Drobinski, P.R., et al. (2007) Foehn in the Rhine valley during MAP: A review of its multiscale dynamics in complex valley geometry. Quarterly Journal of the Royal Meteorological Society, 133(625), 897–916. https://doi.org/10.1002/qj.70.

Drechsel, S. and Mayr, G. (2008) Objective forecasting of foehn winds for a subgrid-scale alpine valley. Weather and Forecasting, 23(2), 205–218. https://doi.org/10.1175/2007WAF2006021.1.

Dudhia, J. (1989) Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two- dimensional model. Journal of the Atmospheric Sciences, 46(20), 3077–3107. https://doi.org/10.1175/1520-0469(1989)046<3077: NSOCOD>2.0.CO;2.

Durran, D.R. (1986) Another look at downslope windstorms. Part I: the development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. Journal of the Atmospheric Sciences, 43(21), 2527–2543. https://doi.org/10.1175/1520-0469 (1986)043<2527:ALADWP>2.0.CO;2.

Elvidge, A.D. and Renfrew, I.A. (2016) The causes of foehn warming in the lee of mountains. Bulletin of the American Meteorological Society, 97(3), 455–466. https://doi.org/10.1175/ BAMS-D-1400194.1.

Elvidge, A.D., Renfrew, I.A., King, J.C., Orr, A. and Lachlan- Cope, T.A. (2016) Foehn warming distributions in non-linear and linear flow regimes: A focus on the Antarctic Peninsula. Quarterly Journal of the Royal Meteorological Society, 142(695), 618–631. https://doi.org/10.1002/qj.2489.

Elvidge, A.D., Munneke, P.K., King, J.C., Renfrew, I.A. and Gilbert, E. (2020) Atmospheric drivers of melt on Larsen C ice shelf: surface energy budget regimes and the impact of foehn. Journal of Geophysical Research. Atmospheres, 125(17), e2020JD032463. https://doi.org/10.1029/2020JD032463.

Gohm, A. and Mayr, G.J. (2004) Hydraulic aspects of föhn winds in an alpine valley. Quarterly Journal of the Royal Meteorological Society, 130(597), 449–480. https://doi.org/10.1256/qj.03.28.

Guzman-Morales, J., Gershunov, A., Theiss, J., Li, H. and Cayan, D. (2016) Santa Ana winds of Southern California: their climatol- ogy, extremes, and behavior spanning six and a half decades. Geophysical Research Letters, 43(6), 2827–2834. https://doi.org/ 10.1002/2016GL067887.

Haid, M., Gohm, A., Umek, L., Ward, H.C., Muschinski, T., Lehner, L. and Rotach, M.W. (2020) Foehn-cold pool interac- tions in the Inn Valley during PIANO IOP2. Quarterly Journal of the Royal Meteorological Society, 146(728), 1232–1263. https://doi.org/10.1002/qj.3735.

Hann, J. (1866) Zur Frage u¨ber den Ursprung des Fo¨hns. Zeitschrift der Österreichischen Gesellschaft für Meteorologie, 1, 257–263.

Hoinka, K.P. (1985a) What is a foehn clearance? Bulletin of the American Meteorological Society, 66(9), 1123–1132. https://doi. org/10.1175/1520-0477(1985)066<1123:WIAFC>2.0.CO;2.

Hoinka, K.P. (1985b) Observation of the airflow over the alps dur- ing a foehn event. Quarterly Journal of the Royal Meteorological Society, 111, 199–224. https://doi.org/10.1002/qj.49711146709.

Hong, S.Y., Dudhia, J. and Chen, S.H. (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132(1), 103–120. https://doi.org/10.1175/1520-0493(2004)132<0103: ARATIM>2.0.CO;2.

Hong, S.Y., Noh, Y. and Dudhia, J. (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318–2341. https://doi.org/10. 1175/MWR3199.1.

Hughes, M. and Hall, A. (2010) Local and synoptic mechanisms causing Southern California's Santa Ana winds. Climate Dynamics, 34, 847–857. https://doi.org/10.1007/s00382-009-0650-4.

Ishizaki, N. and Takayabu, I. (2009) On the warming events over Toyama Plain by using NHRCM. SOLA, 5, 129–132. https://doi. org/10.2151/sola.2009–033.

Japan Meteorological Agency (2020) Explanation of meteorological observation statistics. https://www.data.jma.go.jp/obd/stats/ data/kaisetu/shishin/shishin_all.pdf (in Japanese).

Jaubert, G., Bougeault, P., Berger, H., Chimani, B., Flamant, C., Häberli, C., Lothon, M., Nuret, M. and Vogt, S. (2005) Numeri- cal simulation of meso-gamma scale features of föhn at ground level in the Rhine valley. Quarterly Journal of the Royal Meteo- rological Society, 131(608), 1339–1361. https://doi.org/10.1256/ qj.03.197.

Kohonen, T. (1982) Self-organized formation of topologically cor- rect feature maps. Biological Cybernetics, 43, 59–69. https://doi. org/10.1007/BF00337288.

Koyanagi, T. and Kusaka, H. (2019) A climatological study of the stron- gest local winds of Japan “Inami-kaze”. International Journal of Climatology, 40(2), 1007–1021. https://doi.org/10.1002/joc.6252.

Kusaka, H. and Fudeyasu, H. (2017) Review of downslope wind- storms in Japan. Wind and Structures, 24(6), 637–656. https:// doi.org/10.12989/was.2017.24.6.637.

Lilly, D.K. (1978) A severe downslope windstorm and aircraft tur- bulence event induced by a mountain wave. Journal of the Atmospheric Sciences, 35(1), 59–77. https://doi.org/10.1175/ 1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

Mayr, G.J., Armi, L., Gohm, A., Zängl, G., Durran, D.R., Flamant, C., Gaberšek, S., Mobbs, S., Ross, A. and Weissmann, M. (2007) Gap flows: results from the Mesoscale Alpine Programme. Quarterly Journal of the Royal Meteorological Society, 133(625), 881–896. https://doi.org/10.1002/qj.66.

Mayr, G.J., Plavcan, D., Armi, L., Elvidge, A., Grisogono, B., Horvath, K., Jackson, P., Neururer, A., Seibert, P., Steenburgh, J.W., Stiperski, I., Sturman, A., Vecenaj, Z., Vergeiner, J., Vosper, S. and Zängl, G. (2018) The community foehn classification experiment. Bulletin of the American Meteo- rological Society, 99(11), 2229–2235. https://doi.org/10.1175/ BAMS-D-17-0200.1.

McGowan, H.A. and Sturman, A.P. (1996) Regional and local scale characteristics of foehn wind events over the South Island of New Zealand. Meteorology and Atmospheric Physics, 58, 151–164. https://doi.org/10.1007/BF01027562.

McGowan, H.A., Sturman, A.P., Kossmann, M. and Zawar-Reza, P. (2002) Observations of foehn onset in the southern Alps, New Zealand. Meteorology and Atmospheric Physics, 79, 215–230. https://doi.org/10.1007/s007030200004.

Miltenberger, A.K., Reynolds, S. and Sprenger, M. (2016) Revisiting the latent heating contribution to foehn warming: Lagrangian analysis of two foehn events over the Swiss Alps. Quarterly Jour- nal of the Royal Meteorological Society, 142(698), 2194–2204. https://doi.org/10.1002/qj.2816.

Ministry of Land, Infrastructure, Transport and Tourism (2020) https://nlftp.mlit.go.jp/ksj/ (in Japanese)

Mlawer, E.J., Taubman, S., Brown, J., Iacono, P.D. and Clough, S.A. (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. Jour- nal of Geophysical Research, 102(D14), 16663–16682. https:// doi.org/10.1029/97JD00237.

Mori, K. and Sato, T. (2014) Spatio-temporal variation of high- temperature events in Hokkaido, North Japan. Journal of the Meteorological Society of Japan, 92(4), 327–346. https://doi.org/ 10.2151/jmsj.2014-404.

Muramatsu, K. (1976) The occurrence and damage to paddy-field rice by foehn in the Hokuriku district, Japan. Bulletin of the Hokuriku Agricultural Experiment Station, 19, 25–43 (in Japanese with English Abstract).

Ninomiya, K. and Akiyama, T. (1992) Multi-scale features of Baiu, the summer monsoon over Japan and the East Asia. Journal of the Meteorological Society of Japan, 70(1B), 467–495. https://doi. org/10.2151/jmsj1965.70.1B_467.

Nishi, A. and Kusaka, H. (2019) Effect of foehn wind on record- breaking high temperature event (41.1 degrees C) at Kumagaya on 23 July 2018. SOLA, 15, 17–21. https://doi.org/10.2151/sola.2019-004.

Nishi, A., Kusaka, H., Vitanova, L.L. and Imai, Y. (2019) Contribu- tions of foehn and urban heat Island to the extreme high- temperature event in Niigata city during the night of 23–24 August 2018. SOLA, 15, 132–136. https://doi.org/10.2151/sola. 2019-024.

Nitta, T. and Tatehira, R. (2000) Techniques of the Weather Forecast- ing: For the Weather Forecasters. Tokyo: Tokyo-do Press, p. 343 (in Japanese).

Ohba, M., Nohara, D. and Kadokura, S. (2016) Impacts of synoptic circulation patterns on wind power ramp events in East Japan. Renewable Energy, 96, 591–602. https://doi.org/10.1016/j. renene.2016.05.032.

Ohba, M. and Sugimoto, S. (2020) Impacts of climate change on heavy wet snowfall in Japan. Climate Dynamics, 54, 3151–3164. https://doi.org/10.1007/s00382-020-05163-z.

Orr, A., Marshall, G.J., Hunt, J.C., Sommeria, J., Wang, C.G., Van Lipzig, N.P., Cresswell, D. and King, J.C. (2008) Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. Journal of the Atmospheric Sciences, 65(4), 1396–1413. https://doi.org/10. 1175/2007JAS2498.1.

Raphael, M.N. (2003) The Santa Ana winds of California. Earth Interactions, 7(8), 1–13. https://doi.org/10.1175/1087-3562 (2003)007<0001:TSAWOC>2.0.CO;2.

Richiner, H. and Hächler, P. (2013) Understanding and forecasting Alpine foehn. In: Chow, F.K., De Wekker, S.F.J. and Snyder, B. J. (Eds.) Mountain Weather Research and Forecasting. Dor- drecht: Springer, pp. 219–260. https://doi.org/10.1007/978-94- 007-4098-3_4.

Rolinski, T., Capps, S.B. and Zhuang, W. (2019) Santa Ana winds: A descriptive climatology. Weather and Forecasting, 34(2), 257–275. https://doi.org/10.1175/WAF-D-18-0160.1.

Saito, K. and Ikawa, M. (1993) A numerical study of the local down- slope wind “Yamaji-kaze” in Japan. Part 2: non-linear aspect of the 3-D flow over a mountain range with a col. Journal of the Meteorological Society of Japan, 69(1), 31–56. https://doi.org/10. 2151/jmsj1965.69.1_31.

Saito, K. (1994) A numerical study of the local downslope wind “Yamaji-kaze” in Japan. part 3: numerical simulation of the 27 September 1991 windstorm with a non-hydrostatic multi- nested model. Journal of the Meteorological Society of Japan, 72 (2), 301–329. https://doi.org/10.2151/jmsj1965.72.2_301.

Saito, K., Fujita, T., Yamada, Y., Ishida, J., Kumagai, Y., Aranami, K., Ohmori, S., Nagasawa, R., Kumagai, S., Muroi, C., Kato, T., Eito, H. and Yamazaki, Y. (2006) The oper- ational JMA non-hydrostatic mesoscale model. Monthly Weather Review, 134(4), 1266–1297. https://doi.org/10.1175/ MWR3120.1.

Seibert, P. (1990) South foehn studies since the ALPEX experiment. Meteorology and Atmospheric Physics, 43, 91–103. https://doi. org/10.1007/BF01028112.

Shibata, Y., Kawamura, R. and Hatsushika, H. (2010) Role of large- scale circulation in triggering foehns in the Hokuriku district of Japan during midsummer. Journal of the Meteorological Society of Japan, 88(3), 313–324. https://doi.org/10.2151/jmsj.2010-304.

Takane, Y. and Kusaka, H. (2011) Formation mechanisms of the extreme high surface air temperature of 40.9◦C, observed in the Tokyo metropolitan area: considerations of dynamic foehn and foehnlike wind. Journal of Applied Meteorology and Climatol- ogy, 50(9), 1827–1841. https://doi.org/10.1175/JAMC-D-10-05032.1.

Takane, Y., Kusaka, H. and Kondo, H. (2015) Investigation of a recent extreme high-temperature event in the Tokyo metropoli- tan area using numerical simulations: the potential role of a ‘hybrid’ foehn wind. Quarterly Journal of the Royal Meteorologi- cal Society, 141(690), 1857–1869. https://doi.org/10.1002/qj. 2490.

Tomita, T., Yamaura, T. and Hashimoto, T. (2011) Interannual vari- ability of the Baiu season near Japan evaluated from the equiv- alent potential temperature. Journal of the Meteorological Society of Japan, 89(5), 517–537. https://doi.org/10.2151/jmsj. 2011-507.

Turton, J.V., Kirchgaessner, A., Ross, A.N. and King, J.C. (2018) The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf, Antarctica. Quarterly Journal of the Royal Meteorological Society, 144(713), 1169–1178. https://doi. org/10.1002/qj.3284.

Wada, H., Nonami, H., Yabuoshi, Y., Maruyama, A., Tanaka, A., Wakamatsu, K., Sumi, T., Wakiyama, Y., Ohuchida, M. and Morita, S. (2011) Increased ring-shaped chalkiness and osmtic adjustment when growing rice grains under foehn-induced dry wind condition. Crop Science, 51(4), 1703–1715. https://doi.org/ 10.2135/cropsci2010.08.0503.

Whiteman, C. D. and Whiteman, J. G. (1974) An historical climatol- ogy of damaging downslope windstorms at Boulder, Colorado. NOAA Technical Report, ERL 336-APCL 35. pp. 62.

Würsch, M. and Sprenger, M. (2015) Swiss and Austrian Foehn revisited: A Lagrangian-based analysis. Meteorologische Zeitschrift, 24(3), 225–242. https://doi.org/10.1127/metz/2015/0647.

Yoshino, M. (1975) Climate in a Small Area—An Introduction to Local Meteorology. Tokyo: University of Tokyo Press, p. 549.

Zängl, G. (2003) Deep and shallow south foehn in the region of Innsbruck: typical features and semi-idealized numerical simu- lations. Meteorology and Atmospheric Physics, 83, 237–262. https://doi.org/10.1007/s00703-002-0565-7.

Zängl, G. (2004) Numerical simulations of the foehn in the Rhine valley on October 24, 1999 (MAP IOP 10). Monthly Weather Review, 132(1), 368–389. https://doi.org/10.1175/1520-0493 (2004)132<0368:NSOTFI>2.0.CO;2.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る