リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatial Structure and Formation Mechanism of Local Winds “Suzuka-oroshi” at the Foothills of Suzuka Mountains, Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatial Structure and Formation Mechanism of Local Winds “Suzuka-oroshi” at the Foothills of Suzuka Mountains, Japan

YAMADA, Shunsuke 日下, 博幸 筑波大学

2023.01.19

概要

We examined the essential features and formation mechanism of the strong local “Suzuka­oroshi” winds, which are located leeward of the Suzuka Mountains in Japan. This area features favorable topography for downslope windstorms. Climatological analysis revealed that Suzuka­oroshi mainly occurred after an extratropical cyclone with a cold front and passed the Sea of Japan (55 % of all occurrences). Additionally, inversion layers (1 – 5 km level) were observed in 74 % of cases. Climatological analysis using spatially dense observational data revealed that the strongest winds tended to blow in the northern part of the plain on the leeward side. Numerical simula­ tions for one case by the Weather Research and Forecasting (WRF) model with a 1 km grid increment supported this finding. Simulation results with and without the Suzuka Mountains demonstrated that the strong Suzuka- oroshi in the northern part of the plain comprised downslope windstorms with a transition of flow regime (the internal Froude number was lesser than 1.0 at the windward of mountains and greater than 1.0 above the leeward slope). Additionally, the differences in the height of the mountains between the northern and southern parts re­ sulted in greater wind speed in the northern parts compared to the southern parts.

この論文で使われている画像

参考文献

Arakawa, S., 1968: A proposed mechanism of fall winds and Dashikaze. Pap. Meteor. Geophys., 19, 69–99.

Arakawa, S., 1969: Climatological and dynamic studies on the local strong winds, mainly in Hokkaido, Japan. Geophys. Mag., 34, 359–425.

Armi, L., and G. J. Mayr, 2007: Continuously stratified flow across an Alpine crest with a pass: Shallow and deep föhn. Quart. J. Roy. Meteor. Soc., 133, 459–477.

Asano, Y., and H. Kusaka, 2022: Numerical simulation study of the effects of foehn winds on white head incidences in Yamagata Prefecture, Japan. Meteor. Appl., 28, e2042, doi:10.1002/met.2042.

Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 3122–3134.

Durran, D. R., 1986: Mountain waves. Mesoscale Meteorol- ogy and Forecasting. Ray, P. S. (ed.), Amer. Meteor. Soc. 472–492.

Durran, D. R., 1990: Mountain Waves and Downslope Winds. Atmospheric Processes over Complex Terrain. Meteor. Monogr., No. 23, Blumen, W. (ed.), Amer. Meteor. Soc., 59–81.

Durran, D. R., and J. B. Klemp, 1987: Another look at down­ slope winds. Part II: Nonlinear amplification beneath wave­overturning layers. J. Atmos. Sci., 44, 3402– 3412.

Elvidge, A. D., and I. A. Renfrew, 2016: The causes of foehn warming in the lee of mountains. Bull. Amer. Meteor. Soc., 97, 455–466.

Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, and T. A. Lachlan­Cope, 2016: Foehn warming distributions in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula. Quart. J. Roy. Meteor. Soc., 142, 618–631.

Elvidge, A. D., P. K. Munneke, J. C. King, I. A. Renfrew, and E. Gilbert, 2020: Atmospheric drivers of melt on Larsen C ice shelf: surface energy budget regimes and the impact of foehn. J. Geophys. Res.: Atmos., 125, e2020JD032463, doi:10.1029/2020JD032463.

Fudeyasu, H., T. Kuwagata, Y. Ohashi, S. I. Suzuki, Y. Kiyo­ hara, and Y. Hozumi, 2008: Numerical study of the local downslope wind “Hirodo­kaze” in Japan. Mon. Wea. Rev., 136, 27–40.

Gaberšek, S., and D. R. Durran, 2006: Gap flows through idealized topography. Part II: Effects of rotation and surface friction. J. Atmos. Sci., 63, 2720–2739.

Glennf, C. L., 1961: The Chinook. Weatherwise, 14, 174–182.

Gohm, A., and G. J. Mayr, 2004: Hydraulic aspects of föhn winds in an Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 449–480.

Gohm, A., and G. J. Mayr, 2005: Numerical and observa­ tional case­study of a deep Adriatic bora. Quart. J. Roy. Meteor. Soc., 131, 1363–1392.

Gohm, A., G. Mayr, A. Fix, and A. Giez, 2008: On the onset of bora and the formation of rotors and jumps near a mountain gap. Quart. J. Roy. Meteor. Soc., 134, 21–46. Houghton, D. D., and A. Kasahara, 1968: Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math., 21, 1–23.

Ishii, S., K. Sasaki, K. Mizutani, T. Aoki, T. Itabe, H. Kanno, D. Matsushima, W. Sha, A. T. Noda, M. Sawada, M. Ujiie, Y. Matsuura, and T. Iwasaki, 2007: Temporal evolution and spatial structure of the local easterly wind “Kiyokawa­dashi” in Japan. PART I: Coherent Doppler lidar observations. J. Meteor. Soc. Japan, 85, 797–813.

Jackson, P. L., G. Mayr, and S. Vosper, 2013: Dynamically- driven winds. Mountain Weather Research and Fore- casting. Chow, F. K., S. F. J. De Wekker, B. J. Snyder (eds.), Springer, 121–218.

Klemp, J. B., and D. R. Lilly, 1975: The dynamics of wave­ induced downslope winds. J. Atmos. Sci., 32, 320–339.

Klemp, J. B., and D. R. Durran, 1987: Numerical modeling of Bora winds. Meteor. Atmos. Phys., 36, 215–227.

Komatsu, K. K., and Y. Tachibana, 2016: Two types of strong local wind captured by simultaneous multiple­ site radiosonde soundings across a mountain range. Mon. Wea. Rev., 144, 3915–3936.

Koyanagi, T., and H. Kusaka, 2020: A climatological study of the strongest local winds of Japan “Inami­kaze”. Int. J. Climatol., 40, 1007–1021.

Kusaka, H., and H. Fudeyasu, 2017: Review of downslope windstorms in Japan. Wind and Structures, 24, 637– 656.

Kusaka, H., Y. Miya, and R. Ikeda, 2011: Effects of solar radiation amount and synoptic­scale wind on the local wind “Karakkaze” over the Kanto Plain in Japan. J. Meteor. Soc. Japan, 89, 327–340.

Kusaka, H., A. Nishi, A. Kakinuma, Q.-V. Doan, T. Onodera, and S. Endo, 2021: Japan’s south foehn on the Toyama Plain: Dynamical or thermodynamical mechanisms? Int. J. Climatol., 41, 5350–5367.

Nishi, A., and H. Kusaka, 2019a: A climatological study of the local “Karakkaze” wind, with a focus on tempera­ ture change. SOLA, 15, 149–153.

Nishi, A., and H. Kusaka, 2019b: The “Karakkaze” Local wind as a convexity wind: A case study using dual­ sonde observations and a numerical simulation. SOLA, 15, 160–165.

Lilly, D. K., and E. J. Zipser, 1972: The front range wind­ storm of 11 January 1972 a meteorological narrative. Weatherwise, 25, 56–63.

Lilly, D. K., and J. B. Klemp, 1979: The effects of terrain shape on nonlinear hydrostatic mountain waves. J. Fluid Mech., 95, 241–261.

Lin, Y.­L., 2007: Mesoscale Dynamics. Cambridge Univer­ sity Press, 630 pp.

Lin, Y.­L., and T.­A. Wang, 1996: Flow regimes and tran­ sient dynamics of two-dimensional stratified flow over an isolated mountain ridge. J. Atmos. Sci., 53, 139–158.

Miller, P. P., and D. R. Durran, 1991: On the sensitivity of downslope windstorms to the asymmetry of the mountain profile. J. Atmos. Sci., 48, 1457–1473.

Orr, A., G. J. Marshall, J. C. R. Hunt, J. Sommeria, C.­G. Wang, N. P. M. van Lipzig, D. Cresswell, and J. C. King, 2008: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strength­ ening of westerly circumpolar winds. J. Atmos. Sci., 65, 1396–1413.

Owada, M., 1991: A climatological study of local winds (Oroshi) in central Japan. Doctoral Thesis, Inst. Geosci., Univ. Tsukuba, 88 pp. [Available at https:// dl.ndl.go.jp/info:ndljp/pid/3072387?tocOpened=1.]

Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 1498–1529.

Peltier, W. R., and T. L. Clark, 1983: Nonlinear mountain waves in two and three spatial dimensions. Quart. J. Roy. Meteor. Soc., 109, 527–548.

Pitts, R. O., and T. J. Lyons, 1989: Airflow over a two- dimensional escarpment. I: Observations. Quart. J. Roy. Meteor. Soc., 115, 965–981.

Raymond, D. J., 1972: Calculation of airflow over an arbi­ trary ridge including diabatic heating and cooling. J. Atmos. Sci., 29, 837–843.

Saito, K., 1993: A numerical study of the local downslope wind “Yamaji-kaze” in Japan. Part 2: Non-linear aspect of the 3-D flow over a mountain range with a col. J. Meteor. Soc. Japan, 71, 247–272.

Saito, K., 1994: A numerical study of the local downslope wind “Yamaji-kaze” in Japan. Part 3: Numerical simulation of the 27 September 1991 windstorm with a non­hydrostatic multi­nested model. J. Meteor. Soc. Japan, 72, 301–329.

Saito, K., and M. Ikawa, 1991: A numerical study of the local downslope wind “Yamaji-kaze” in Japan. J. Meteor. Soc. Japan, 69, 31–56.

Sasaki, K., H. Kanno, D. Matsushima, W. Sha, T. Iwasaki, S. Ishii, K. Mizutani, M. Moriyama, K. Fukubori, M. Murai, and K. Yokoyama, 2005: An observational study of the local easterly strong wind “Kiyokawa­ dashi” in the Shonai Plains, Yamagata. J. Agric. Meteor., 60, 725–728.

Sasaki, K., M. Sawada, S. Ishii, H. Kanno, K. Mizutani, T. Aoki, T. Itabe, D. Matsushima, W. Sha, A. T. Noda, M. Ujiie, Y. Matsuura, and T. Iwasaki, 2010: The tempo­ ral evolution and spatial structure of the local easterly wind “Kiyokawa­dashi” in Japan. PART II: Numerical simulations. J. Meteor. Soc. Japan, 88, 161–181.

Sawada, M., T. Iwasaki, W. Sha, T. Yamazaki, H. Iwai, S. Ishii, K. Mizutani, T. Itabe, and I. Yamada, 2012: Transient downslope winds under the influence of stationary lee waves from the Zao mountain range. J. Meteor. Soc. Japan, 90, 79–100.

Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 2597–2603.

Smith, R. B., 1987: Aerial observations of the Yugoslavian bora. J. Atmos. Sci., 44, 269–297.

Smith, C. M., and E. D. Skyllingstad, 2011: Effects of inversion height and surface heat flux on downslope windstorms. Mon. Wea. Rev., 139, 3750–3764.

Turton, J. V., A. Kirchgaessner, A. N. Ross, and J. C. King, 2018: The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf, Antarctica. Quart. J. Roy. Meteor. Soc., 144, 1169–1178.

Wind Engineering Institute, Co., Ltd., 1984: This Is All You Need to Know about Building Wind. Kajima Institute Publishing, 224 pp (in Japanese).

Yoshino, M. M., 1975: Climate in a Small Area: An Intro- duction to Local Meteorology. University of Tokyo Press, 549 pp.

Yoshino, M. M., 1986: Climate in a Small Area. New Edi- tion. Chijin Shokan, 298 pp (in Japanese).

Zängl, G., A. Gohm, and G. Geier, 2004: South foehn in the Wipp Valley–Innsbruck region: Numerical simu­ lations on the 24 October 1999 case (MAP­IOP 10). Meteor. Atmos. Phys., 86, 213–243.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る