リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cerebral hemodynamic response during the resuscitation period after hypoxic-ischemic insult predicts brain injury on day 5 after insult in newborn piglets」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cerebral hemodynamic response during the resuscitation period after hypoxic-ischemic insult predicts brain injury on day 5 after insult in newborn piglets

中尾 泰浩 香川大学 DOI:10.1038/s41598-022-16625-1

2022.12.27

概要

Perinatal hypoxic-ischemic brain injury of neonates remains a significant problem worldwide. During the resuscitation period, changes in cerebral hemoglobin oxygen saturation (ScO2) have been identified by near-infrared spectroscopy (NIRS). However, in asphyxiated neonates, the relationship between these changes and brain injury is not known. Three-wavelength near-infrared time-resolved spectroscopy, an advanced technology for NIRS, allows for the estimation of ScO2 and cerebral blood volume (CBV). Here, we studied changes in ScO2 and CBV during the resuscitation period after hypoxic-ischemic insult and the relationship between these changes after insult and histopathological brain injuries on day 5 after insult using an asphyxiated piglet model. Of 36 newborn piglets subjected to hypoxic-ischemic insult, 29 were analyzed. ScO2 and CBV were measured 0, 5, 10, 15, and 30 min after the insult. Brain tissue was histologically evaluated on day 5. ScO2 and CBV increased immediately after the insult, reached a peak, and then maintained a consistent value. The increase in CBV 5 to 30 min after the insult was significantly correlated with histopathological injury scores. However, there was no correlation with ScO2. In conclusion, an increase in CBV within 30 min after hypoxic-ischemic insult reflects the histopathological brain injury on day 5 after insult in a piglet model.

参考文献

1. Lee, A. C. et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr. Res, 74(Suppl 1), 50-72 (2013).

2. Dhillon, S. K. et al. The fetus at the tipping point: Modifying the outcome of fetal asphyxia. J. Physiol. 596, 5571-5592 (2018).

3. Baburamani, A. A. & Arichi, T. Complementing cooling: The ongoing search for an effective adjunct to therapeutic hypothermia. J. Physiol. 598, 905-906 (2020).

4. Volpe, J. J. et al. Volpe's Neurology of the Newborn (Elsevier, 2017).

5. Perlman, J. M. et al. Part 7: Neonatal resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 132, S204-S241 (2015).

6. Aziz, K., Chadwick, M., Baker, M. & Andrews, W. Ante- and intra-partum factors that predict increased need for neonatal resus-citation. Resuscitation 79, 444-452 (2008).

7. Hosono, S. et al. Summary of Japanese Neonatal Cardiopulmonary Resuscitation Guidelines 2015. Pediatr. Int. 62, 128-139 (2020).

8. Morimoto, A. et al. Measurement of the absolute value of cerebral blood volume and optical properties in term neonates immediately after birth using near-infrared time-resolved spectroscopy: A preliminary observation study. Appi. Sci. 9, 2172 (2019).

9. Morimoto, A. et al. Cerebral hemodynamics during neonatal transition according to mode of delivery. Sei. Rep. 11, 19380 (2021).

10. Nakamura, S. et al. Simultaneous measurement of cerebral hemoglobin oxygen saturation and blood volume in asphyxiated neonates by near-infrared time-resolved spectroscopy. Brain Dev. 37, 925-932 (2015).

11. Nakamura, M. et al. Cerebral blood volume measurement using near-infrared time-resolved spectroscopy and histopathological evaluation after hypoxic-ischemic insult in newborn piglets. Int. J. Dev, Neurosci. 42, 1-9 (2015).

12. Mitsuie, T. et al. Cerebral blood volume increment after resuscitation measured by near-infrared time-resolved spectroscopy can estimate degree of hypoxic-schemic insult in newborn piglets. Sci. Rep. 11, 13096 (2021).

13. Aziz, K. et al. Part 5: Neonatal resuscitation: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 142, S524-$550 (2020).

14. Vestergaard, M. B. et al. Human cerebral perfusion, oxygen consumption, and lactate production in response to hypoxic exposure. Cereb. Cortex 32, 1295-1306 (2022).

15. Palmer, G. C. Neurochemical coupled actions of transmitters in the microvasculature of the brain. Neurosci. Biobehav. Rev. 10, 79-101 (1986).

16. Kanu, A. & Leffler, C. W. Roles of glia limitans astrocytes and carbon monoxide in adenosine diphosphate-induced pial arteriolar dilation in newborn pigs. Stroke 40, 930-935 (2009).

17. Jinnai, W. et al. Relationship between prolonged neural suppression and cerebral hemodynamic dysfunction during hypothermia in asphyxiated piglets. Brain Dev. 40, 649-661 (2018).

18. Marks, K. et al. Delayed vasodilation and altered oxygenation after cerebral ischemia in fetal sheep. Pediatr. Res. 39, 48 (1996).

19. Bennet, L. & Gunn, A. J. The fetal heart rate response to hypoxia: Insights from animal models. Clin. Perinatol. 36, 655-672 (2009).

20. Gunn, A. J. & Bennet, L. Fetal hypoxia insults and patterns of brain injury: Insights from animal models. Clin. Perinatol. 36, 579-593 (2009).

21. Isobe, K. et al. Changes in cerebral hemoglobin concentration and oxygen saturation immediately after birth in the human neonate using full-spectrum near infrared spectroscopy. J. Biomed. Opt. 5, 283-286 (2000).

22. Isobe, K. et al. Measurement of cerebral oxygenation in neonates after vaginal delivery and cesarean section using full-spectrum near infrared spectroscopy. Comp. Biochem. Physiol. A Mol. Inter. Physiol. 132, 133-138 (2002).

23. Urlesberger, B. et al. Regional oxygen saturation of the brain during birth transition of term infants: Comparison between elective cesarean and vaginal deliveries. J. Pediatr. 159, 404-408 (2011).

24. Pichler, G. et al. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J. Pediatr. 163, 1558-1563 (2013).

25. Dempsey, E., Pammi, M., Ryan, A.C. & Barrington, K.J. Standardised formal resuscitation training programmes for reducing mortality and morbidity in newborn infants. Cochrane Database Syst. Rev. 2015(9), CD009106 (2015).

26. Wyckoff, M. H. et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 142, S185-$221 (2020).

27. López-Herce, J. et al. Correlations between herodynamic, oxygenation and tissue perfusion parameters during asphyxial cardiac arrest and resuscitation in a pediatric animal model. Resuscitation 82, 755-759 (2011).

28. Schwaberger, B. et al. Transitional changes in cerebral blood volume at birth. Neonatology 108, 253-258 (2015).

29. Ijichi, S. et al. Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia. J. Biomed. Opt. 10, 024026 (2005).

30. Iichi, S. et al. Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy. Pediatr. Res. 58, 568-573 (2005).

31. Nakamura, S. et al. Relationship between early changes in cerebral blood volume and electrocortical activity after hypoxic-ischemic insult in newborn piglets. Brain Dev. 36, 563-571 (2014).

32. Hun, Y. et al. Hydrogen ventilation combined with mild hypothermia improves short-term neurological outcomes in a 5-day neonatal hypoxia-ischaemia piglet model. Sci. Rep. 9, 4088 (2019).

33. Yamato, S.H. et al. Intravenous edaravone plus therapeutic hypothermia offers limited neuroprotection in the hypoxic-ischaeric newborn piglet. Neonatology, 117, 713-720 (2020).

34. Thoresen, M. et al. A piglet survival model of posthypoxic encephalopathy. Pediatr. Res. 40, 738-748 (1996).

35. Nakamura, S. et al. Cerebral blood volume combined with amplitude-integrated EEG can be a suitable guide to control hypoxic/ ischemic insult in a piglet model. Brain Dev. 35, 614-625 (2013).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る