リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「透明軽石と非透明軽石の成因:インドネシア5万2千年前Maninjauカルデラ形成噴火の例」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

透明軽石と非透明軽石の成因:インドネシア5万2千年前Maninjauカルデラ形成噴火の例

インドラノバ, スヘンドロ INDRANOVA, SUHENDRO 九州大学

2021.09.24

概要

The 52 ka eruption of Maninjau caldera in Indonesia produced two distinctive type of white pumices: transparent (TWP) and non-transparent (NTWP). Both pumice types are crystal-poor (avg. 3.3 %), having similar mineralogy, similar glass compositions (avg. 78.5 wt. % SiO2), and similar plagioclase core compositions (avg. An24). We found that the abundance of TWP decreases towards the upper stratigraphic ignimbrite deposits, together with the increase in NTWP, grey pumice, banded pumice, and lithic (non-juvenile) contents. The TWP are typically dominated by large vesicles, while NTWP characterized by abundant-small vesicles. Large vesicle corresponds to the preexisting vesicle which formed in magma chamber (pheno-vesicle, > 0.1 mm). On the other hand, small vesicle in groundmass (matrix-vesicle, <0.1 mm) is attributed to second nucleation in the conduit during the eruption. We performed quantitative comparison using vesicle data (pheno- and matrix-vesicles) for these two white pumice types. The correlation between pheno- and matrix-vesicles results in negative correlation. We also found that the boundary between TWP and NTWP is clearly defined by the volume fraction and number density ratio of pheno- and matrix-vesicles. Namely TWP originates from phenovesicle-dominated magma, while NTWP dose from phenovesicle-poor magma. In terms of number density, the correlation between pheno-vesicle number density (PVND) and matrix-vesicle number density (MVND) result in two regimes: (1) decompression-controlled regime, showing nearly constant-PVND correlation for TWP, and (2) phenovesicle-controlled regime, showing steeply-decreasing PVND correlation for NTWP. In the first regime, MVNDs value varies dramatically, suggesting the variation of decompression rate by two to three orders of magnitudes. While in the second regime, the slight increase of MVNDs are considered as the effect of the decrease in PVND within the nearly constant decompression rate.ation; vesicle number density

この論文で使われている画像

参考文献

Acocella, V., O. Bellier, L. Sandri, M. Sébrier, S. Pramumijoyo. 2018. Weak tectono-magmatic relationships along an obliquely convergent plate boundary: Sumatra, Indonesia. Frontiers in Earth Science 6.

Alloway, B.V., Pribadi, A., Westgate, J.A., Bird, M., Fifield, L.K., Hogg, A. & Smith, I. 2004. Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra. Earth and Planetary Science Letters 227, pp. 121-133.

Allen, S.R. 2000. Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. Journal of Volcanology and Geothermal Research 105, pp. 141 – 162.

Bellier, O., M. Sébrier 1994. Relationship between tectonism and volcanism along the Great Sumatran Fault Zone deduced by SPOT image analyses. Tectonophysics 233, pp. 215-231.

Chesner C.A., W.I. Rose. 1991. Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia. Bulletin of Volcanology 53, pp. 343-356.

de Maisonneuve, C.B., O. Bachmann, A. Burgisser. 2009. Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption. Bulletin of Volcanology 71, pp. 643-658.

de Maisonneuve, C.B. and Bergal-Kuvikas, O. 2020. Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: identifying tephrochronologic markers. Journal of Quarternary Science 35 (1-2), pp. 272-287.

Druitt, T.H. and R.S.J. Sparks.1984. On the formation of calderas during ignimbrite eruptions. Letters to Nature 310, pp. 679-681.

Edmonds, M., and Woods, A.W. 2018. Exsolved volatiles in magma reservoirs. Journal of Volcanology and Geothermal Research 368, pp. 13-30.

Fernández-Blanco D., M. Philippon, C. von Hagke. 2016. Structure and kinematics of the Sumatran Fault system in North Sumatra (Indonesia). Tectonophysics 693, pp. 453-464.

Goff, F., R.G. Warren, C.J. Goff, N. Dunbar. 2014. Eruption of reverse-zoned upper Tshirege Member, Bandelier Tuff from centralized vents within Valles caldera, New Mexico. Journal of Volcanology and Geothermal Research 276, pp. 82-104.

Gurioli, L., B.F. Houghton, K.V., Cashman, R. Cioni. 2005. Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bulletin of Volcanology 67, pp. 144-159.

Harahap, B.H. and Abidin, Z.A. 2006. Petrology of lava from Maninjau lake, West Sumatra. Journal of Geological Resource 16:6, pp. 359-370.

Heiken, G., Wohletz, K., 1991. Fragmentation processes in explosive volcanic eruptions. Sedimentation in Volcanic Settings 45

Houghton, B.F., R.J. Carey, K.V. Cashman, C.J.N. Wilson, B.J. Hobden, J.E. Hammer. 2010. Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8 ka Taupo eruption, New Zealand: Evidence from clast vesicularity. Journal of Volcanology and Geothermal Research 195, pp. 31-47.

Leo, G.W., Hedge, C.E. & Marvin, R.F. 1980. Geochemistry, strontium isotope data, and potassium-argon ages of the andesite-rhyolite association in the Padang area, West Sumatra. Journal of Volcanology and Geothermal Research 7, pp. 139-156.

Klug, C., K.V. Cashman. 1994. Vesiculation of May 18, 1980, Mount St. Helens magma. Geology 22, pp. 468-472. Klug, C., K.V. Cashman. 1996. Permeability development in vesiculating magmas: implications for fragmentation. Bulletin of Volcanology 58, pp. 87-100.

Klug, C., K.V. Cashman, C.R. Bacon. 2002. Structure and physical characteristics of pumice from the climatic eruption of Mount Mazama (Crater Lake), Oregon. Bulletin of Volcanology 64, pp. 486-501.

Madden-Nadeau, A.L., M. Cassidy, D.M. Pyle, T.A. Mather, S.F.L. Watt, S.L. Engwell, M. Abdurrachman, M.E.M. Nurshal, D.R. Tappin, T. Ismail. 2020. The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field- to crystal-scale observations. Journal of Volcanology and Geothermal Research 411.

Maeno, F., H. Taniguchi. 2007. Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: Implication from near-vent eruptive deposits. Journal of Volcanology and Geothermal Research 167, pp. 212-238

Mertel, C., Dingwell., D.B., Spieler, O., Pichavant, M., Wilke, M., 2000. Fragmentation of foamed silicic melts: an experimental study. Earth and Planetary Science Letters 178, pp. 47-58

Mitchell, S.J., B.F. Houghton, R.J. Carey, M. Manga, K.E. Fauria, M.R. Jones, S.A. Soule, C. E. Conway, Z. Wei, T. Giachetti. 2019. Submarine giant pumice: a window into the shallow conduit dynamics of a recent silicic eruption. Bulletin of Volcanology 81:42

Natawidjadja, D.H., L. Bradley, M.R. Daryono, S. Aribowo, J. Herrin. 2017. Late quarternary eruption of the Ranau caldera and new geological slip rates of the Sumatran fault zone in southern Sumatra, Indonesia. Geoscience Letters 4:21

Polacci, M., P. Papale, M. Rosi. 2001. Textural heterogeneities in pumices from the climatic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bulletin of Volcanology 63, pp. 83-97.

Purbo-Hadiwidjoyo, M.M., Sjachrudin, M.L. & Suparka, S. 1979. The volcano-tectonic history of the Maninjau caldera, Western Sumatra, Indonesia. Geol. Mijnbouw. 58, pp. 193-200.

Reubi, O. and I.A. Nicholls. 2002. Variability in eruptive dynamics associated with caldera collapse: an example from two successive eruptions at Batur volcanic field, Bali, Indonesia. Bulletin of Volcanology 66, pp. 134-148.

Rose, W.I. and C.A. Chesner, 1994. Dispersal of ash in the great Toba eruption, 75 ka. Geology 15, pp. 913-917.

Rosi, M., L. Vezzoli, P. Aleotti, M.D. Censi. 1996. Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy. Bulletin of Volcanology 57, pp. 541-554.

Salisbury, M.J., Patton, J.R., Kent, A.J.R., Goldfinger, C., Djadjadihardja, Y. & Hanifa, U. 2012. Deep-sea ash layers reveal evidence for large, late Pleistocene, and Holocene explosive activity from Sumatra, Indonesia. Journal of Volcanology and Geothermal Research 231-232, pp. 61-71.

Seggiaro, R.E., S.R. Guzmán, J. Martí. 2019. Dynamics of caldera collapse during the Coranzulí eruption (6.6 Ma) (Central Andes, Argentina). Journal of Volcanology and Geothermal Research 374, pp. 1-12.

Shea, T. 2017. Bubble nucleation in magmas: A dominantly heterogeneous process?. Journal of Volcanology and Geothermal Research 343, pp. 155-170.

Shea, T., Gurioli, L., B.F. Houghton. 2012. Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bulletin of Volcanology 74, pp. 2363-2381.

Sigurdsson, H., S. Carey. 1989. Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bulletin of Volcanology 51, pp. 243-270.

Simmons, J.M., R.J. Carey, R.A.F. Cas, T.H. Druitt. 2017. High magma decompression rates at the peak of a violent caldera-forming eruption (Lower Pumice 1 eruption, Santorini, Greece). Bulletin of Volcanology 79:42.

Simmons, J.M., R.A.F. Cas, T.H. Druitt, C. Folkes. 2016. Complex variations during a caldera-forming Plinian eruption, including precursor deposits, thick pumice fallout, co-ignimbrite breccias and climatic lag breccias: The 184 ka Lower Pumice 1 eruption sequence, Santorini, Greece. Journal of Volcanology and Geothermal Research 324, pp. 200-219.

Suzuki-Kamata, K., H. Kamata, C.R. Bacon. 1993. Evolution of the caldera-forming eruption at Crater Lake, Oregon, indicated by component analysis of lithic fragments. Journal of Geophysical Research 98, pp. 14059-14074.

Toramaru, A. 2006. BND (bubble number density) decompression rate meter for explosive volcanic eruptions Journal of Volcanology and Geothermal Research 154, pp. 303-316.

Toramaru, A. 2014. On the second nucleation of bubbles in magmas under sudden decompression. Earth and Planetary Science Letters 404, pp. 190-199.

Wilson, L., R.S.J. Sparks, G.P.L. Walker. 1980. Explosivev volcanic eruptions – IV. The control of magma properties and conduit geometry on eruption column behaviour. Gephysical Journal International Royal Astronomical Society 63, pp. 117-148.

Vidal, C.M., N. Métrich., J.C. Komorowski, I. Pratomo, A. Michel, N. Kartadinata, V. Robert, F.Lavigne. 2015. Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia). Bulletin of Volcanology 77:73.

Vinci, A. 1985. Distribution and chemical composition of tephra layers from eastern Mediterranean abyssal sediments. Marine Geology 64, pp. 143-155.

Walker, G.P.L. 1971. Grain size characteristics of pyroclastic deposits. The Journal of Geology 79, pp. 696-714.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る