リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「7万4千年前のトバカルデラ噴火火砕物(YTT)の組織学的及び地球化学的研究:多重マグマだまりの証拠」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

7万4千年前のトバカルデラ噴火火砕物(YTT)の組織学的及び地球化学的研究:多重マグマだまりの証拠

ガブリエラ, ノゴ, レタナニングテイアス, ブンガ, ニ-ン NOGO RETNANINGTYAS BUNGA NAEN, GABRIELA 九州大学

2022.09.22

概要

The eruption process responsible for the formation of the 74 ka Youngest Toba Tuff (YTT) is still debatable since currently, there are two hypotheses on the magma chamber; one single voluminous chamber or multiple magma chambers. Detailed component analysis of eruption products, comprehensive stratigraphy, mineralogical data, and geochemical signatures of phenocrysts and matrix glass were used to reveal the eruption processes of the YTT super-eruption and to give a constraint to the property of magma chamber. Based on the componentry, mineral assemblages, mineral and glass compositions, and vesicle texture, four distinct pumice types (P1-P4) were identified. The first type (P1) is amphibole-bearing pumice with 77.1 wt % on average of SiO2 content of glass. This type of pumice is characterized by abundant matrix-vesicles, with plagioclase showing a wide range of anorthite content (from An20 to An80) and disequilibrium texture. The second and third types (P2 and P3) are the most but slightly evolved pumices, with 77.5 and 77.6 wt.% on average of SiO2 content of glass, respectively. Plagioclases of P2 and P3 pumices commonly have unzoned texture, with low anorthite content (An30 on average). P2 is biotite-bearing, distinctively characterized by abundant pheno-vesicles, while the P3 pumice includes rare pheno-vesicle, skeletal-polyhedral quartz and no biotite. The fourth type of pumice (P4) is quartz- and sanidine-free, shows the less evolved glass composition (76.3 wt.% on average of SiO2 content of glass), and is characterized by dominant matrix-vesicles and crystal clots of plagioclase, amphibole, pyroxene, and biotite; plagioclase of the P4 pumice shows a hollow texture and high anorthite content (An50-60). In-situ trace element analysis by LA-ICP-MS for matrix glass of P1, P2, P3 and P4 shows very distinct geochemical signatures, which are clearly correlated with the four pumice types. Plotted on bivariate diagrams of Ba vs. Y, Sr vs. Y and Ba vs. Sr, the P1 pumice is characterized by relatively medium Ba and Sr (400 – 875 ppm, and 41 – 67 ppm, respectively), but variable Y contents (20 – 53 ppm); the P2 and P3 pumices, on the other hand, show low Ba and Sr (8–136 ppm, and 13 – 37 ppm, respectively) and highly variable Y contents (27 – 77 ppm); and P4 pumice is characterized by relatively high Ba and Sr (1173 – 1340 ppm, and 95 – 124 ppm, respectively), but narrow range of Y contents (21 – 31 ppm). The geochemical signatures of matrix glass compositions of distinct pumice types suggest the occurrence of four distinct magma bodies. The number of fractions of distinct glass shards and pumices (ØGP) with the same geochemical signatures represents the volume fraction of each magma type. From the approximate volume of the magma, 5300 DRE km3 after Costa et al. (2014) and the geographical distributions of each pumice type, it is found that a voluminous P1 (ØGP: 0.61~2555 km3), medium P2 (ØGP: 0.28~1170 km3), and smallest P4 (ØGP: 0.03~125 km3) chambers, located relatively at the northern direction, and small P3 chamber (ØGP: 0.07~311 km3) from southern caldera were evacuated during the 74 ka YTT eruption. Eruptions from multiple magma chambers were initiated by a high supersaturation of pheno-vesicle-rich magma (P2 magma). The high supersaturation was caused by the magma buoyancy through the migration of magmatic volatile phase in P1 magma and accumulated in P2 magma, thus triggering the eruption of P1, P2, P3, and P4 magmas simultaneously.

この論文で使われている画像

参考文献

Abdel-Rahman, A.F.M., 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of petrology, 35(2), pp.525-541. https://doi.org/10/1093/petrology/35.2.525

Aldiss, D.T., Whandoyo R., Ghazali, S.A., Kusyono., 1983. Geological Map of the Sidikalang and (part of) Sinabang Quadrangles, Sumatra. Bandung: Geological Research and Development Centre

Allan, A.S., Wilson, C.J., Millet, M.A. and Wysoczanski, R.J., 2012. The invisible hand: Tectonic triggering and modulation of a rhyolitic supereruption. Geology, 40(6), pp.563-566. https://doi.org/10.1130/G32969.1

Bachmann, O. and Huber, C., 2016. Silicic magma reservoirs in the Earth’s crust. American Mineralogist, 101(11), pp.2377-2404. https://doi.org/10.2138/am-2016-5675

Bacon, C.R. and Druitt, T.H., 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2), pp.224-256. https://doi.org/10.1007/BF00402114

Barbee O., Chesner C., Deering C., 2020. Quartz crystals in Toba rhyolites show textures symptomatic of rapid crystallization. American Mineralogist, 105 (2): 194–226. https://doi.org/10.2138/am-2020-6947

Begue F., Deering C.D., Gravley D.M., Kennedy B. M., Chambefort I., Gualda G. A. R., Bachmann O., 2014. Extraction, Storage and Eruption of Multiple Isolated Magma

Batches in the Paired Mamaku and Ohakuri Eruption, Taupo Volcanic Zone, New Zealand. Journal of Petrology 55, 1653–1684. https://doi.org/10.1093/petrology/egu038

Bell, E.A., Boehnke, P. and Harrison, T.M., 2017. Applications of biotite inclusion composition to zircon provenance determination. Earth and Planetary Science Letters, 473, pp.237-246. https://doi.org/10.1016/j.epsl.2017.06.012

Blake, S. and Campbell, I.H., 1986. The dynamics of magma-mixing during flow in volcanic conduits. Contributions to Mineralogy and Petrology, 94(1), pp.72-81. https://doi.org/10.1007/BF00371228

Bouseily A.M., Sokkary A.A., 1975. The Relation Between Rb, Ba, and Sr in Granitic Rocks.

Chemical Geology 16, 207-219. https://doi.org/10.1016/0009-2541(75)90029-7. Browne B.L., Gardner J., 2004. The nature and timing of caldera collapse as indicated by accidental lithic fragments from the AD ∼1000 eruption of Volcán Ceboruco, Mexico. Journal of Volcanology and Geothermal Research 130, 93-105. https://doi.org/10.1016/S0377-0273(03)00283-X

Cashman, K.V. and Giordano, G., 2014. Calderas and magma reservoirs. Journal of Volcanology and Geothermal Research, pp.28-45. https://doi.org/10.1016/j.volgeores.2014.09.007

Chesner C.A., Rose W.I., 1991. Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatera, Indonesia. Bulletin of Volcanology 53, 343-356

Chesner C.A., 1998. Petrogenesis of the Toba tuffs, Sumatera, Indonesia. Journal of Petrology 39, 397–438. https://doi.org/10.1093/petroj/39.3.397

Chesner C.A., 2012. The Toba Caldera Complex. Quaternary International 258, 5–18. https://doi.org/10.1016/j.quaint.2011.09.025

Clarke, M.C.G., Ghazali, S.A., Harahap, H., Kusyono., Stephenson, B., 1982. Geological Map of the Pematangsiantar Quadrangle, Sumatra. Bandung: Geological Research and Development Centre

Collins, W.J., Richards, S.R., Healy, B.E. and Ellison, P.I., 2000. Origin of heterogeneous mafic enclaves by two-stage hybridisation in magma conduits (dykes) below and in granitic magma chambers. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2), pp.27-45. DOI: 10.1017/S0263593300007276

Cooper G., Wilson C., Millet M., Baker J., Smith, E., 2011. Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth and planetary sciences letters 313-314, 23-33. https://doi.org/10.1016/j.epsl.2011.11.006

Comida P.P., Ross P.S., Dürig T., White J.D., Lefebvre N., 2022. Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation: 2. Choice of size fraction and method optimization for particle cross-sections. Bulletin of Volcanology 84, 1-24. https://doi.org/10.1007/s00445-021-01517-5

Costa A., Smith V.C., Macedonio G., Matthews NE., 2014. The magnitude and impact of the Youngest Toba Tuff super-eruption. Frontiers in Earth Science, 2, 1-8. https://doi: 10.3389/feart.2014.00016

Darren F.M., Paul R.R., Ross C. D., Smith V.C., Justin I.S., Morgan L.E., Staff R.A., Ellis B.E., Pearce N.J.G., 2017. High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary. Quaternary Geochronology 39, 1-23. https://doi.org/10.1016/j.quageo.2017.01.002

Ellis B.S, Wolff J.A., 2012. Complex storage of rhyolite in the central Snake River Plain. Journal of Volcanology and Geothermal Research 211–212, 1-11. https://doi.org/10.1016/j.jvolgeores.2011.10.002.

Ellis B.S, Bachmann O., Wolff J.A., 2014. Cumulate fragments in silicic ignimbrites: The case of the Snake River Plain. Geology 42, 431–434. https://doi.org/10.1130/G35399.1

Erdmann, S., Scaillet, B. and Kellett, D.A., 2010. Xenocryst assimilation and formation of peritectic crystals during magma contamination: an experimental study. Journal of Volcanology and Geothermal Research, 198(3-4), pp.355-367. https://doi.org/10.1016/j.jvolgeores.2010.10.002

Forni, F., Petricca, E., Bachmann, O., Mollo, S., De Astis, G. and Piochi, M., 2018. The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff calderaforming eruption (Campi Flegrei, Southern Italy). Contributions to Mineralogy and Petrology, 173(6), pp.1-18. https://doi.org/10.1007/s00410-018-1471-4

Gansecki, C.A., Mahood, G.A. and McWilliams, M.O., 1996. 40Ar39Ar geochronology of rhyolites erupted following collapse of the Yellowstone caldera, Yellowstone Plateau volcanic field: implications for crustal contamination. Earth and Planetary Science Letters, 142(1-2), pp.91-107. https://doi.org/10.1016/0012-821X(96)00088-X

Gardner J.E, Layer P.W., Rutherford M., 2002. Phenocrysts versus xenocrysts in the youngest Toba Tuff: Implications for the petrogenesis of 2800 km3 of magma. Geology 30, 347–350. https://doi.org/10.1130/0091-7613(2002)030<0347:PVXITY>2.0.CO;2

Giacomoni, P.P., Ferlito, C., Coltorti, M., Bonadiman, C. and Lanzafame, G., 2014. Plagioclase as archive of magma ascent dynamics on “open conduit” volcanoes: the 2001–2006 eruptive period at Mt. Etna. Earth-Science Reviews, 138, pp.371-393. https://doi.org/10.1016/j.earscirev.2014.06.009

Girard G., Stix J., 2009. Magma Recharge and Crystal Mush Rejuvenation Associated with Early Post-Collapse Upper Basin Member Rhyolites, Yellowstone Caldera, Wyoming. Journal of Petrology. Volume 50, 2095–2125. https://doi.org/10.1093/petrology/egp070

Gravley D.M., Wilson C.J.N., Leonard G.S., Cole J.W., 2007. Double trouble: paired ignimbrite eruptions and collateral subsidence in the Taupo Volcanic Zone, New Zealand. The Geological Society of America Bulletin 119, 18–30. https://doi.org/10.1130/B25924.1

Gualda, G.A. and Ghiorso, M.S., 2014. Phase-equilibrium barometers for silicic rocks based on rhyolite-MELTS. Part 1: Principles, procedures, and evaluation of the method. Contributions to Mineralogy and Petrology, 168(1), pp.1-17. https://doi.org/10.1007/s00410-014-1033-3

Gunawan, R.M.P., 2020. Physical and textural characteristics of Ranau Ignimbrite, Southern Sumtra, Indonesia. Master thesis.

Halliday A.N., Davidson J.P., Hildreth W., Holden P., 1991. Modelling the petrogenesis of high Rb/Sr silicic magmas. Chemical Geology. Volume 92, 107-114. https://doi.org/10.1016/0009-2541(91)90051-R.

Hildreth W., Wilson C.J.N., 2007. Compositional zoning of the Bishop Tuff. Journal of Petrology 48, 951–999. https://doi.org/10.1093/petrology/egm007

Huber, C., Bachmann, O. and Dufek, J., 2011. Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas. Earth and Planetary Science Letters, 304(3-4), pp.443-454. https://doi.org/10.1016/j.epsl.2011.02.022

Humphreys, M., Christopher, T. and Hards, V., 2009. Microlite transfer by disaggregation of mafic inclusions following magma mixing at Soufrière Hills volcano, Montserrat. Contributions to Mineralogy and Petrology, 157(5), pp.609-624. https://doi.org/10.1007/s00410-008-0356-3

Huppert H.E., Woods A.W., 2002. The role of volatiles in magma chamber dynamics. Nature 5, 493-5. doi: 10.1038/nature01211. PMID: 12466839.

Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum

K., Frick D.A., Günther D., Enzweiler J., 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35, 397–429.

Kamata S., Kamata K., Bacon, C.R., 1993. Evolution of the caldera-forming eruption at Crater Lake, Oregon, indicated by component analysis of lithic fragments. Journal of Geophysical Research 98, 14,059–14,074. https://doi.org/10.1029/93JB00934

Kaneko, K., Kamata, H., Koyaguchi, T., Yoshikawa, M. and Furukawa, K., 2007. Repeated large-scale eruptions from a single compositionally stratified magma chamber: an example from Aso volcano, Southwest Japan. Journal of Volcanology and Geothermal Research, 167(1-4), pp.160-180. https://doi.org/10.1016/j.jvolgeores.2007.05.002

Kelley, K.A. and Cottrell, E., 2009. Water and the oxidation state of subduction zone magmas. Science, 325(5940), pp.605-607. DOI: 10.1126/science.1174156

Knight M.D., Walker G.P.L., Ellwood B.B., Diehl J.F., 1986. Stratigraphy, paleomagnetism, and magnetic fabric of the Toba Tuffs: constraints on the sources and eruptive styles. Journal of Geophysical Research 91, 10355. https://doi.org/10.1029/ jb091ib10p10355.

Koyaguchi, T., 1985. Magma mixing in a conduit. Journal of Volcanology and Geothermal Research, 25(3-4), pp.365-369.

Lane, C.S., Chorn, B.T. and Johnson, T.C., 2013. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences, 110(20), pp.8025-8029. https://doi.org/10.1073/pnas.1301474110

Masturyono, McCaffrey, R., Wark, D. A., Roecker, S. W., Fauzi, Ibrahim, G., & Sukhyar., 2001. Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by three-dimensional P wave velocities, seismicty, and gravity data. Geochemistry, Geophysics, Geosystems 2, 2000GC000096. https://doi.org/10.1029/2000gc000096

Matthews, N.E., Smith, V.C., Costa, A., Durant, A.J., Pyle, D.M. and Pearce, N.J., 2012. Ultradistal tephra deposits from super-eruptions: examples from Toba, Indonesia and Taupo Volcanic Zone, New Zealand. Quaternary International, 258, pp.54-79. https://doi.org/10.1016/j.quaint.2011.07.010

Maughan L.L, Christiansen E.H, Best M.G, Grommé C.S, Deino A.L, Tingey D.G., 2002. The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate. Journal of Volcanology and Geothermal Research 113, 129-157. https://doi.org/10.1016/S0377-0273(01)00256-6.

Milner D.M, Cole J.W, Wood C.P, 2003. Mamaku Ignimbrite: a caldera-forming ignimbrite erupted from a compositionally zoned magma chamber in Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research 122, 243-264. https://doi.org/10.1016/S0377-0273(02)00504-8.

Mucek A.E., Danišík M., de Silva, S.L., Miggins D.P., Schmitt A.K., Pratomo I., Koppers A., Gillespie J., 2021. Resurgence initiation and subsolidus eruption of cold carapace of warm magma at Toba Caldera, Sumatra. Communications Earth & Environment 2, 185. https://doi.org/10.1038/s43247-021-00260-1

Pabst S., Wörner G., Civetta L., Tesoro R., 2008. Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bulletin of Volcanology 70, 961–976. https://doi.org/10.1007/s00445-007-0180-z

Parisio, F., Vinciguerra, S., Kolditz, O. and Nagel, T., 2019. The brittle-ductile transition in active volcanoes. Scientific reports, 9(1), pp.1-10. https://doi.org/10.1038/s41598-018-36505-x

Parmigiani A., Faroughi S., Huber C., Bachman O., 2016. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature 532, 492–495. https://doi.org/10.1038/nature17401

Pappalardo L., Piochi M., D’antonio M., Civetta L., Pertrini R., 2002. Evidence for Multi-stage Magmatic Evolution during the past 60 kyr at Campi Flegrei (Italy) Deduced from Sr, Nd and Pb Isotope Data. Journal of Petrology 43, 1415– 1434. https://doi.org/10.1093/petrology/43.8.1415

Pearce N.J.G., Perkins W.T., Westgate J.A., Wade S.C., 2011. Trace-element microanalysis by LA-ICP-MS: The quest for comprehensive chemical characterisation of single, sub10 μm volcanic glass shards. Quaternary International 246, 57-81. https://doi.org/10.1016/j.quaint.2011.07.012

Pearce N. J. G., Westgate J. A., Gualda G. A. R., Gatti E., Muhammad R. F., 2019. Tephra glass chemistry provides storage and discharge details of five magma reservoirs which fed the 75 ka Youngest Toba Tuff eruption, northern Sumatra. Journal of Quaternary Science 3149, 256–271. https://doi.org/10.1002/jqs.3149

Pittari A., Cas R.A.F., Wolff J.A., Nichols H.J., Larson P.B., Martí J., 2008. Chapter 3 The Use of Lithic Clast Distributions in Pyroclastic Deposits to Understand Pre- and Syn-Caldera Collapse Processes: A Case Study of the Abrigo Ignimbrite, Tenerife, Canary Islands. Elsevier 10, 97-142. https://doi.org/10.1016/S1871-644X(07)00003-4.

Reubi, O. and Blundy, J., 2008. Assimilation of plutonic roots, formation of high-K ‘exotic’melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. Journal of Petrology, 49(12), pp.2221-2243. https://doi.org/10.1093/petrology/egn066

Reubi, O. and Nicholls, I.A., 2005. Structure and dynamics of a silicic magmatic system associated with caldera-forming eruptions at Batur volcanic field, Bali, Indonesia. Journal of Petrology, 46(7), pp.1367-1391. https://doi.org/10.1093/petrology/egi019

Ridolfi, F., Renzulli, A. and Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), pp.45-66. https://doi.org/10.1007/s00410-009-0465-7

Riehle, J.R., Champion, D.E., Brew, D.A. and Lanphere, M.A., 1992. Pyroclastic deposits of the Mount Edgecumbe volcanic field, southeast Alaska: eruptions of a stratified magma chamber. Journal of Volcanology and Geothermal Research, 53(1-4), pp.117-143. https://doi.org/10.1016/0377-0273(92)90078-R

Rose, W.I. and Chesner, C.A., 1990. Worldwide dispersal of ash and gases from earth's largest known eruption: Toba, Sumatra, 75 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 89(3), pp.269-275. https://doi.org/10.1016/0031-0182(90)90068-I Ross PS., Dürig T., Comida P.P., Lefebvre N., White J.D.L., Andronico D., Thivet S., Eychenne J., Gurioli L., 2002. Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation; 1. Overview and workflow. Bulletin of Volcanology 84, 13. https://doi.org/10.1007/s00445-021-01516-6

Schmincke, H.U., 2004. Pyroclastic Flows, Block and Ash Flows, Surges and the Laacher See Eruption. In: Volcanism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18952-4_11

Shane P., Westgate J., Williams M., Korisettar R., 1995. New Geochemical Evidence for the Youngest Toba Tuff in India. Quaternary Research 44, 200-204. https://doi.org/10.1006/qres.1995.1064.

Shane, P., Nairn, I.A. and Smith, V.C., 2005. Magma mingling in the∼ 50 ka Rotoiti eruption from Okataina Volcanic Centre: implications for geochemical diversity and chronology of large volume rhyolites. Journal of Volcanology and Geothermal Research, 139(3-4), pp.295-313. https://doi.org/10.1016/j.jvolgeores.2004.08.012

Shane, P., Martin, S.B., Smith, V.C., Beggs, K.F., Darragh, M.B., Cole, J.W. and Nairn, I.A., 2007. Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera volcanic complex, New Zealand. Journal of Volcanology and Geothermal Research, 164(1-2), pp.1-26. https://doi.org/10.1016/j.jvolgeores.2007.04.003

Shane, P., Nairn, I.A., Smith, V.C., Darragh, M., Beggs, K. and Cole, J.W., 2008. Silicic recharge of multiple rhyolite magmas by basaltic intrusion during the 22.6 ka Okareka Eruption Episode, New Zealand. Lithos, 103(3-4), pp.527-549. https://doi.org/10.1016/j.lithos.2007.11.002

Shea, T., 2017. Bubble nucleation in magmas: a dominantly heterogeneous process?. Journal of Volcanology and Geothermal Research, 343, pp.155-170. https://doi.org/10.1016/j.jvolgeores.2017.06.025

Simmons, J.M., Carey, R.J., Cas, R., Druitt T.H., 2017. High magma decompression rates at the peak of a violent caldera-forming eruption (Lower Pumice 1 eruption, Santorini, Greece). Bulletin of Volcanology 79, 42. https://doi.org/10.1007/s00445-017-1120-1

Simmons J.M., Cas R.A.F., Druitt T.H., Carey R.J. 2017. The initiation and development of a caldera-forming Plinian eruption (172 ka Lower Pumice 2 eruption, Santorini, Greece). Journal of Volcanology and Geothermal Research, 341. Pages 332-350. https://doi.org/10.1016/j.jvolgeores.2017.05.034

Smith V. C., Pearce N. J. G., Matthews N. E., Westgate J. A., Petraglia M. D., Haslam M., Lane C.S., Korisettar R., Pal J.N., 2011. Geochemical fingerprinting of the widespread Toba tephra using biotite compositions. Quaternary International 246, 97–104. https://doi.org/10.1016/j.quaint.2011.05.012

Smith, V.C., Shane, P. and Nairn, I.A., 2005. Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 148(3- 4), pp.372-406. https://doi.org/10.1016/j.jvolgeores.2005.05.005

Stankiewicz, J., Ryberg, T., Haberland, C., Fauzi, Natawidjaja, D., 2010. Lake Toba volcano magma chamber imaged by ambient seismic noise tomography. Geophysical Research Letters 37. L17306. doi:10.1029/2010GL044211

Suhendro, I., 2021. The origins of transparent and non-transparent white pumice: A case study of the 52 ka Maninjau caldera-forming eruption, Indonesia. Kyushu University Institutional Repository. Doctoral dissertation. http://hdl.handle.net/2324/4495997

Suhendro, I., Toramaru, A., Harijoko, A., Wibowo, H.E., 2022. The origins of transparent and non-transparent white pumice: A case study of the 52 ka Maninjau caldera-forming eruption, Indonesia. Journal of Volcanology and Geothermal Research, 107643, ISSN 0377-0273. https://doi.org/10.1016/j.jvolgeores.2022.107643.

Suhendro, I., Toramaru, A., Miyamoto, T., Miyabuchi, Y., Yamamoto, T., 2021. Magma chamber stratification of the 1815 Tambora caldera-forming eruption. Bulletin of Volcanology 83, 63. https://doi.org/10.1007/s00445-021-01484-x

Sumner, J.M. and Wolff, J., 2003. Petrogenesis of mixed-magma, high-grade, peralkaline ignimbrite ‘TL’(Gran Canaria): diverse styles of mixing in a replenished, zoned magma chamber. Journal of Volcanology and Geothermal Research, 126(1-2), pp.109-126. https://doi.org/10.1016/S0377-0273(03)00121-5 Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. Reviews in mineralogy and geochemistry, 69(1), pp.61-120. https://doi.org/10.2138/rmg.2008.69.3

Tait, S., Jaupart, C. and Vergniolle, S., 1989. Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth and Planetary Science Letters, 92(1), pp.107-123. https://doi.org/10.1016/0012-821X(89)90025-3

Tierney, C. R., Reid, M. R., Vazquez, J. A., & Chesner, C. A., 2019. Diverse late-stage crystallization and storage conditions in melt domains from the Youngest Toba Tuff revealed by age and compositional heterogeneity in the last increment of accessory phase growth. Contributions to Mineralogy and Petrology 174, 31. https://doi.org/10.1007/s00410-019-1566-6

Tierney, C.R., Reid, M.R., 2021. Quartz-hosted melt inclusions as windows into magma assembly and storage processes in the Youngest Toba Tuff. Geochemistry, Geophysics, Geosystems 22, e2020GC009564. https://doi.org/10.1029/2020GC009564

Toramaru, A., 2006. BND (bubble number density) decompression rate meter for explosive volcanic eruptions. Journal of Volcanology and Geothermal Research, 154(3-4), pp.303- 316. https://doi.org/10.1016/j.jvolgeores.2006.03.027

Toramaru, A., 2014. On the second nucleation of bubbles in magmas under sudden decompression. Earth and Planetary Science Letters, 404, pp.190-199. https://doi.org/10.1016/j.epsl.2014.07.035

Toramaru A., 2022, Exploring Eruptive Phenomena from Vesiculation and Crystallization. In: Vesiculation and Crystallization of Magma. Advances in Volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior). Springer, Singapore. https://doi.org/10.1007/978-981-16-4209-8_10

Ueki, K., Inui, M., Matsunaga, K., Okamoto, N. and Oshio, K., 2020. Oxidation during magma mixing recorded by symplectites at Kusatsu–Shirane Volcano, Central Japan. Earth, Planets and Space, 72(1), pp.1-12. https://doi.org/10.1186/s40623-020-01192-4

Vazquez J., Reid M., 2004. Probing the Accumulation History of the Voluminous Toba Magma. Sciences 305, 5686. https://doi.org/10.1126/science.1096994

Vinkler A.P., Cashman K., Giordano G., Groppelli G., 2012. Evolution of the mafic Villa Senni caldera-forming eruption at Colli Albani volcano, Italy, indicated by textural analysis of juvenile fragments. Journal of Volcanology and Geothermal Research 235–236, 37-54. https://doi.org/10.1016/j.jvolgeores.2012.03.006.

Wada, K., 1995. Fractal structure of heterogeneous ejecta from the Me-akan volcano, eastern Hokkaido, Japan: implications for mixing mechanism in a volcanic conduit. Journal of volcanology and geothermal research, 66(1-4), pp.69-79. https://doi.org/10.1016/0377-0273(94)00052-I

Westgate J.A, Pearce N.J.G., Perkins W.T., Preece S.J., Chesner C.A., Muhammad R.F., 2013. Tephrochronology of the Toba tuffs: Four primary glass populations define the75‐ka

Youngest Toba Tuff, northern Sumatra, Indonesia. Journal of Quaternary Science 28, 772–776. https://doi.org/10.1002/jqs.2672

Yokoyama, T. and Hehanussa, P.E., 1981. The age of “Old Toba Tuff” and some problems on the geohistory of Lake Toba, Sumatra, Indonesia. Paleolimnology of Lake Biwa and the Japanese Pleistocene, 9, pp.177-186.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る