リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tumor metabolic alterations after neoadjuvant chemoradiotherapy predict postoperative recurrence in patients with pancreatic cancer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tumor metabolic alterations after neoadjuvant chemoradiotherapy predict postoperative recurrence in patients with pancreatic cancer

和田 侑希子 香川大学 DOI:10.1093/jjco/hyac074

2022.12.27

概要

Objective: We investigated the metabolic changes in pancreatic ductal adenocarcinoma to identify the mechanisms of treatment response of neoadjuvant chemoradiation therapy.

Methods: Frozen tumor and non-neoplastic pancreas tissues were prospectively obtained from 88 patients with pancreatic ductal adenocarcinoma who underwent curative-intent surgery. Sixty-two patients received neoadjuvant chemoradiation therapy and 26 patients did not receive neoadjuvant therapy (control group). Comprehensive analysis of metabolites in tumor and non-neoplastic pancreatic tissue was performed by capillary electrophoresis-mass spectrometry.

Results: Capillary electrophoresis-mass spectrometry detected 90 metabolites for analysis among more than 500 ionic metabolites quantified. There were significant differences in 27 tumor metabolites between the neoadjuvant chemoradiation therapy and control groups. There were significant differences in eight metabolites [1-MethylnNicotinamide, Carnitine, Glucose, Glutathione (red), N-acetylglucosamine 6-phosphate, N-acetylglucosamine 1-phosphate, UMP, Phosphocholine] between good responder and poor responder for neoadjuvant chemoradiation therapy. Among these metabolites, phosphocholine, Carnitine and Glutathione were associated with recurrence-free survival only in the neoadjuvant chemoradiation therapy group. Microarray confirmed marked gene suppression of choline transporters [CTL1-4 (SLC44A1-44A4)] in pancreatic ductal adenocarcinoma tissue of neoadjuvant chemoradiation therapy group.

Conclusion: The present study identifies several important metabolic consequences and potential neoadjuvant chemoradiation therapy targets in pancreatic ductal adenocarcinoma. Choline metabolism is one of the key pathways involved in recurrence of the patients with pancreatic ductal adenocarcinoma who received neoadjuvant chemoradiation therapy.

関連論文

参考文献

1. Uesaka K, Boku N, Fukutomi A, et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 2016;388:248-57.

2. Jang JY, Han Y, Lee H, et al. Oncological benefits of neoadjuvant chemoradiation with gemcitabine versus upfront surgery in patients with borderline resectable pancreatic cancer: a prospective, randomized, open-label, multicenter phase 2/3 trial. Ann Surg 2018;268:215-22.

3. Okano K, Súto H, Oshima M, et al. A prospective phase Il trial of neoadju-vant S-1 with concurrent hypofractionated radiotherapy in patients with resectable and borderline resectable pancreatic ducal adenocarcinoma. Ann Surg Oncol 2017;24:2777-84.

4. Satoh K, Yachida S, Sugimoto M, et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc "Natl Acad Sci US A 2017;114:7697-706.

5. Fujita M, Imadome K, Imai T. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC-1. Cancer Sci 2017;108: 961-71.

6. Itoi T, Sugimoto M, Umeda J, et al. Serum metabolomic profiles for human pancreatic cancer discrimination. Int ] Mol Sci 2017;18:767.

7. Wen S, Zhan B, Feng J, ct al. Non-invasively predicting differentiation of pancreatic cancer through comparative serum metabonomic profiling, BMC Cancer 2017;17:708.

8. Evans DB, Rich TA, Byrd DR, et al. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. Arch Surg 1992;127:1335-9.

9. Soga T, Baran R, Suematsu M, et al. Differential menbolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glu-. tathione consumption. / Biol Chem 2006;281:16768-76.

10. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sc 2016;41:211-8.

11. McMaster CR. From yeast to humans - roles of the Kennedy pathway for phosphatidylcholine synthesis. FEBS Let 2018;592:1256-72.

12. • DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism, Sei Ad 2016;2:1600200.

13. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 2016;16:635-49.

14. Ritchie SA, Akita H, Takemasa I, et al. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection. BMC Cancer 2013;13:416.

15. He XH, Li WT, Gu YI, et al. Metabonomic studies of pancreatie cancer response to radiotherapy in a mouse xenograft model using magnetic resonance spectroscopy and principal components analysis. World I Gas-troenterol 2013;19:4200-8.

16. QuQ, Zeng F, Liu X, Wang OJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic cargets in cancer. Cell Death, Dis 2016;7:2226.

17. Melone MAB, Valentino A, Margarucci S, Galdcrisi U, Giordano A, Peluso G. The carnitine system and cancer metabolic plasticity. Cell Death Dis 2018;9:228.

18. Ishimoto T, Nagano O, Ye I, et al. CD44 variant regulates redox status in cancer cells by stabilizing the ×CT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 2011;19:387-400.

19. Battini S, Faitot F, Imperiale A, et al. Metabolomics approaches in pancreatic adenocarcinoma: tumor metabolism profiling predices clinical outcome of patients. BMC Med 2017;15:56.

20. Bapiro TE, Frese KK, Courtin A, et al. Gemcitabine diphosphate choline• is a major netabolite linked to the Kennedy pathway in pancreatic cancer models in vivo. Br J Cancer 2014:111:318-25.

21. Eliyahu G, Kreizman T, Degani H. Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer 2007;120:1721-30.

22. Michel V, Yuan Z, Ramsubir S, Bakovic M. Choline transport for phos-pholinid synthesis. Exp Biol Med (Maywood) 2006;231:490-504.

23. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer 2011;11:835-48.

24. Glunde K, Serkova NJ. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 2006;7:1109-23.

25. Hodolic M. Imaging of prostate cancer using (18)F-choline PET/computed tomography. PET Clin 2017;12:173-84.

26. Penet MF, Shah T, Bharti 5, et al. Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism. Clin Cancer Res 2015;21:386-95.

27. Warburg O. On the origin of cancer cells. Science (New York, NY) 1956;123:309-14.

28. Inazu M. Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. Biopharm Drug Dispos 2014;35:431-49.

29. Mattie M, Raitano A, Morrison K, et al. The discovery and preclinical development of ASG-§ME, an antibody-drug conjugate targeting SLC44A4-positive epithelial sumors including pancreatic and prostate cancer. Mol Cancer Ther 2016;15:2679-87.

30. de la Cueva, A, Ramirez de Molina A, Alvarez-Ayerza N, et al. Combined 5-FU and ChoKalpha inhibitors as a new alternative therapy of colorectal cancer: cvidence in human tumor-derived cell lines and mouse xenografts. PLoS One 2013;8:64961.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る