リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Berezin-Toeplitz quantization of vector bundles over Kahler manifolds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Berezin-Toeplitz quantization of vector bundles over Kahler manifolds

足立, 宏幸 筑波大学 DOI:10.15068/0002008289

2023.09.13

概要

One of the approaches of the quantum theory of gravity or the theory of everything is string
theory. String theory is a theory in which the fundamental constituents of the universe are onedimensional strings rather than zero-dimensional point particles. This simple modification makes
a huge difference from theories of fundamental point particles. The spectrum of a single firstquantized string contains various different types of states with particular masses and spins. More
surprisingly, there is a particular state corresponding to the graviton, which is a quantum of
gravitational interaction, and the string theory is naturally incorporate the quantum theory of
gravity.
Various studies of superstring theory and M-theory [1–3] suggests that the noncommutative
geometry may play an essential role in the description of spacetime in Planck scale. In the Einstein’s
classical theory of gravity, we assume that the spacetime is a smooth manifold, which means that
the spacetime coordinates are a set of real numbers. On the contrary, in the noncommutative
geometry, we assume that the spacetime coordinates are noncommutative operators on a suitable
Hilbert space. When the Hilbert space is finite-dimensional, the spacetime coordinates are finite
dimensional square matrices. We call this kind of noncommutative geometry as fuzzy geometry or
matrix geometry and it is deeply related to matrix models of superstring theory and M-theory.
In the study of the fuzzy geometry, a theory called the matrix regularization [4] plays an essential role to uncover the relationship between the commutative geometry and the fuzzy geometry.
The matrix regularization is a map from functions on a manifold to corresponding matrices on a
fuzzy geometry. Using this map, one can construct a matrix model of superstring theory (or Mtheory) from a world-sheet theory of a single string (or world-volume theory of a single membrane).
Therefore, this theory is important to study the relationship between string (or a membrane) states
to the corresponding matrix states. Let us briefly discuss a mathematical aspect of matrix regularization. Let us consider a symplectic manifold (M, ω), which is an even-dimensional manifold
equipped with a nondegenerate closed two-form ω. Let 2n be the dimension of M . From the
symplectic structure ω, one can naturally define a volume form µω := ω ∧n /n! and the Poisson
bracket {f, g} = Xf g. Here, f, g are smooth functions on M and Xf is the Hamiltonian vector
field. In this sense, a symplectic manifold is a mathematical generalization of the phase space.
Now, let us also assume M is closed, i.e. M is a compact manifold without boundary. ...

参考文献

[1] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, Phys. Rev. D 55, 5112 (1997).

[2] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, Nucl. Phys. B 498, 467 (1997).

[3] N. Seiberg and E. Witten, JHEP 09, 032 (1999).

[4] J. Hoppe, Soryushiron Kenkyu Electronics, volume 80 (3), 145-202 (1989).

[5] J. Arnlind, J. Hoppe and G. Huisken, J. Diff. Geom. 91, no. 1, 1 (2012).

[6] M. Bordemann, E. Meinrenken and M. Schlichenmaier, Commun. Math. Phys. 165, 281

(1994).

[7] X. Ma and G. Marinescu, Journal of Geometric Analysis, no. 2, volume 18, 565-611 (2008).

[8] X. Ma and G. Marinescu, Holomorphic Morse Inequalities and Bergman Kernels, Birkhauser,

(2007).

[9] H. Adachi, G. Ishiki, S. Kanno and T. Matsumoto, Phys. Rev. D 103, no.12, 126003 (2021).

[10] H. Adachi, G. Ishiki and S. Kanno, [arXiv:2210.01397 [hep-th]].

[11] E. Hawkins, Commun. Math. Phys. 202, 517 (1999).

[12] E. Hawkins, Commun. Math. Phys. 215, 409 (2000).

[13] H. Adachi, G. Ishiki, T. Matsumoto and K. Saito, Phys. Rev. D 101, no.10, 106009 (2020).

[14] H. Adachi, G. Ishiki, S. Kanno and T. Matsumoto, [arXiv:2110.15544 [hep-th]].

[15] E. Witten, Nucl. Phys. B 443, 85-126 (1995)

[16] N. Seiberg, Phys. Rev. Lett. 79, 3577-3580 (1997)

[17] D. McDuff and D. Salamon, Introduction to Symplectic Topology, 3rd edition (2017)

[18] N. Woodhouse, Geometric Quantization, Oxford Mathematical Monographs, (1997)

[19] H. Lawson and M. Michelsohn, Spin Geometry, Princeton University Press, (1989).

[20] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry Volume II, Wiley Classics

Library (1996)

[21] E. Hawkins, Commun. Math. Phys. 255, 513-575 (2005).

87

[22] X. Dai, K. Liu and X. Ma, J. Differential Geom. 72 (1) 1-41 (2006)

[23] U. Carow-Watamura, H. Steinacker and S. Watamura, J. Geom. Phys. 54, 373-399 (2005).

[24] B. P. Dolan, I. Huet, S. Murray and D. O’Connor, JHEP 0707, 007 (2007).

[25] Y. Tenjinbayashi, H. Igarashi and T. Fujiwara, Annals Phys. 322, 460-488 (2007).

[26] D. Mumford, Tata lectures on Theta I, Birkhauser, (1983)

[27] C. Fronsdal, Phys. Rev. D 18, 3624 (1978)

[28] M. A. Vasiliev, [arXiv:hep-th/9910096 [hep-th]].

[29] H. Grosse and P. Presnajder, Lett. Math. Phys. 33, 171-182 (1995)

[30] U. Carow-Watamura and S. Watamura, Commun. Math. Phys. 183, 365-382 (1997)

[31] A. P. Balachandran, T. R. Govindarajan and B. Ydri, Mod. Phys. Lett. A 15, 1279 (2000)

[32] H. Aoki, S. Iso and K. Nagao, Phys. Rev. D 67, 085005 (2003)

[33] H. Aoki, S. Iso and K. Nagao, Phys. Rev. D 67, 065018 (2003)

[34] A. P. Balachandran and G. Immirzi, Phys. Rev. D 68, 065023 (2003)

[35] W. Taylor, Rev. Mod. Phys. 73, 419-462 (2001)

88

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る