リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sas-Ptp10D shapes germ-line stem cell niche by facilitating JNK-mediated apoptosis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sas-Ptp10D shapes germ-line stem cell niche by facilitating JNK-mediated apoptosis

Taniguchi, Kiichiro Igaki, Tatsushi 京都大学 DOI:10.1371/journal.pgen.1010684

2023.03.27

概要

The function of the stem cell system is supported by a stereotypical shape of the niche structure. In Drosophila ovarian germarium, somatic cap cells form a dish-like niche structure that allows only two or three germ-line stem cells (GSCs) reside in the niche. Despite extensive studies on the mechanism of stem cell maintenance, the mechanisms of how the dish-like niche structure is shaped and how this structure contributes to the stem cell system have been elusive. Here, we show that a transmembrane protein Stranded at second (Sas) and its receptor Protein tyrosine phosphatase 10D (Ptp10D), effectors of axon guidance and cell competition via epidermal growth factor receptor (Egfr) inhibition, shape the dish-like niche structure by facilitating c-Jun N-terminal kinase (JNK)-mediated apoptosis. Loss of Sas or Ptp10D in gonadal apical cells, but not in GSCs or cap cells, during the pre-pupal stage results in abnormal shaping of the niche structure in the adult, which allows excessive, four to six GSCs reside in the niche. Mechanistically, loss of Sas-Ptp10D elevates Egfr signaling in the gonadal apical cells, thereby suppressing their naturally-occurring JNK-mediated apoptosis that is essential for the shaping of the dish-like niche structure by neighboring cap cells. Notably, the abnormal niche shape and resulting excessive GSCs lead to diminished egg production. Our data propose a concept that the stereotypical shaping of the niche structure optimizes the stem cell system, thereby maximizing the reproductive capacity.

この論文で使われている画像

参考文献

1.

Perez-Vale KZ, Peifer M. Orchestrating morphogenesis: building the body plan by cell shape changes

and movements. Development. 2020 Sep 11; 147(17). https://doi.org/10.1242/dev.191049 PMID:

32917667

2.

Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011 Nov 11; 147

(4):742–58. https://doi.org/10.1016/j.cell.2011.10.033 PMID: 22078876

3.

Day SJ, Lawrence PA. Measuring dimensions: the regulation of size and shape. Development. 2000

Jul; 127(14):2977–87. https://doi.org/10.1242/dev.127.14.2977 PMID: 10862736

4.

Tada M, Heisenberg CP. Convergent extension: using collective cell migration and cell intercalation to

shape embryos. Development. 2012 Nov; 139(21):3897–904. https://doi.org/10.1242/dev.073007

PMID: 23048180

5.

Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000

Oct 13; 290(5490):328–30. https://doi.org/10.1126/science.290.5490.328 PMID: 11030649

6.

Xie T, Spradling AC. decapentaplegic is essential for the maintenance and division of germline stem

cells in the Drosophila ovary. Cell. 1998 Jul 24; 94(2):251–60. https://doi.org/10.1016/s0092-8674(00)

81424-5 PMID: 9695953

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010684 March 27, 2023

18 / 21

PLOS GENETICS

Shaping GSC-niche by Sas-Ptp10D via JNK-mediated apoptosis

7.

Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001 Nov 1; 414

(6859):98–104. https://doi.org/10.1038/35102160 PMID: 11689954

8.

Song X, Zhu CH, Doan C, Xie T. Germline stem cells anchored by adherens junctions in the Drosophila

ovary niches. Science. 2002 Jun 7; 296(5574):1855–7. https://doi.org/10.1126/science.1069871 PMID:

12052957

9.

Irizarry J, Stathopoulos A. FGF signaling supports Drosophila fertility by regulating development of

ovarian muscle tissues. Dev Biol. 2015 Aug 1; 404(1):1–13. https://doi.org/10.1016/j.ydbio.2015.04.023

PMID: 25958090

10.

Gilboa L. Organizing stem cell units in the Drosophila ovary. Curr Opin Genet Dev. 2015 Jun; 32:31–6.

https://doi.org/10.1016/j.gde.2015.01.005 PMID: 25703842

11.

Sahut-Barnola I, Godt D, Laski FA, Couderc JL. Drosophila ovary morphogenesis: analysis of terminal

filament formation and identification of a gene required for this process. Dev Biol. 1995 Jul; 170(1):127–

35. https://doi.org/10.1006/dbio.1995.1201 PMID: 7601303

12.

Cohen ED, Mariol MC, Wallace RM, Weyers J, Kamberov YG, Pradel J, et al. DWnt4 regulates cell

movement and focal adhesion kinase during Drosophila ovarian morphogenesis. Dev Cell. 2002 Apr; 2

(4):437–48. https://doi.org/10.1016/s1534-5807(02)00142-9 PMID: 11970894

13.

Song X, Call GB, Kirilly D, Xie T. Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development. 2007 Mar; 134(6):1071–80. https://doi.org/10.1242/dev.003392 PMID:

17287246

14.

Morata G. Cell competition: A historical perspective. Dev Biol. 2021 Aug; 476:33–40. https://doi.org/10.

1016/j.ydbio.2021.02.012 PMID: 33775694

15.

Baker NE. Emerging mechanisms of cell competition. Nat Rev Genet. 2020 Nov; 21(11):683–97.

https://doi.org/10.1038/s41576-020-0262-8 PMID: 32778819

16.

Johnston LA. Competitive interactions between cells: death, growth, and geography. Science. 2009 Jun

26; 324(5935):1679–82. https://doi.org/10.1126/science.1163862 PMID: 19556501

17.

Nagata R, Igaki T. Cell competition: Emerging mechanisms to eliminate neighbors. Dev Growth Differ.

2018 Dec; 60(9):522–30. https://doi.org/10.1111/dgd.12575 PMID: 30443922

18.

Kanda H, Igaki T. Mechanism of tumor-suppressive cell competition in flies. Cancer Sci. 2020 Oct; 111

(10):3409–15. https://doi.org/10.1111/cas.14575 PMID: 32677169

19.

Vishwakarma M, Piddini E. Outcompeting cancer. Nat Rev Cancer. 2020 Mar; 20(3):187–98. https://

doi.org/10.1038/s41568-019-0231-8 PMID: 31932757

20.

Yamamoto M, Ohsawa S, Kunimasa K, Igaki T. The ligand Sas and its receptor PTP10D drive tumoursuppressive cell competition. Nature. 2017 Feb 9; 542(7640):246–50. https://doi.org/10.1038/

nature21033 PMID: 28092921

21.

Jeon M, Nguyen H, Bahri S, Zinn K. Redundancy and compensation in axon guidance: genetic analysis

of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily. Neural Dev. 2008 Jan 31;

3:3. https://doi.org/10.1186/1749-8104-3-3 PMID: 18237413

22.

Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T. Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell. 2009 Mar; 16(3):458–65.

https://doi.org/10.1016/j.devcel.2009.01.002 PMID: 19289090

23.

Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 2003 Nov 3; 22(21):5769–79. https://doi.org/10.1093/emboj/

cdg548 PMID: 14592975

24.

Schonbaum CP, Organ EL, Qu S, Cavener DR. The Drosophila melanogaster stranded at second (sas)

gene encodes a putative epidermal cell surface receptor required for larval development. Dev Biol.

1992 Jun; 151(2):431–45. https://doi.org/10.1016/0012-1606(92)90183-h PMID: 1339334

25.

Sun Q, Schindelholz B, Knirr M, Schmid A, Zinn K. Complex genetic interactions among four receptor

tyrosine phosphatases regulate axon guidance in Drosophila. Mol Cell Neurosci. 2001 Feb; 17(2):274–

91. https://doi.org/10.1006/mcne.2000.0939 PMID: 11178866

26.

Sun Q, Bahri S, Schmid A, Chia W, Zinn K. Receptor tyrosine phosphatases regulate axon guidance

across the midline of the Drosophila embryo. Development. 2000 Feb; 127(4):801–12. https://doi.org/

10.1242/dev.127.4.801 PMID: 10648238

27.

Kai T, Spradling A. An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells.

Proc Natl Acad Sci U S A. 2003 Apr 15; 100(8):4633–8. https://doi.org/10.1073/pnas.0830856100

PMID: 12676994

28.

Jeon M, Zinn K. Receptor tyrosine phosphatases control tracheal tube geometries through negative

regulation of Egfr signaling. Development. 2009 Sep; 136(18):3121–9. https://doi.org/10.1242/dev.

033597 PMID: 19675131

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010684 March 27, 2023

19 / 21

PLOS GENETICS

Shaping GSC-niche by Sas-Ptp10D via JNK-mediated apoptosis

29.

Zhu CH, Xie T. Clonal expansion of ovarian germline stem cells during niche formation in Drosophila.

Development. 2003 Jun; 130(12):2579–88. https://doi.org/10.1242/dev.00499 PMID: 12736203

30.

Song X, Wong MD, Kawase E, Xi R, Ding BC, McCarthy JJ, et al. Bmp signals from niche cells directly

repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the

Drosophila ovary. Development. 2004 Mar; 131(6):1353–64. https://doi.org/10.1242/dev.01026 PMID:

14973291

31.

Cabrera GR, Godt D, Fang PY, Couderc JL, Laski FA. Expression pattern of Gal4 enhancer trap insertions into the bric a brac locus generated by P element replacement. Genesis. 2002 Sep-Oct; 34(1–

2):62–5.

32.

Hsu TH, Yang CY, Yeh TH, Huang YC, Wang TW, Yu JY. The Hippo pathway acts downstream of the

Hedgehog signaling to regulate follicle stem cell maintenance in the Drosophila ovary. Sci Rep. 2017

Jun 30; 7(1):4480. https://doi.org/10.1038/s41598-017-04052-6 PMID: 28667262

33.

McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL. Spatiotemporal rescue of memory dysfunction

in Drosophila. Science. 2003 Dec 5; 302(5651):1765–8. https://doi.org/10.1126/science.1089035

PMID: 14657498

34.

Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, et al. A genome-wide resource for the

analysis of protein localisation in Drosophila. Elife. 2016 Feb 20; 5:e12068. https://doi.org/10.7554/

eLife.12068 PMID: 26896675

35.

Moreno E, Valon L, Levillayer F, Levayer R. Competition for Space Induces Cell Elimination through

Compaction-Driven ERK Downregulation. Curr Biol. 2019 Jan 7; 29(1):23–34 e8. https://doi.org/10.

1016/j.cub.2018.11.007 PMID: 30554899

36.

Siegrist SE, Haque NS, Chen CH, Hay BA, Hariharan IK. Inactivation of both Foxo and reaper promotes

long-term adult neurogenesis in Drosophila. Curr Biol. 2010 Apr 13; 20(7):643–8. https://doi.org/10.

1016/j.cub.2010.01.060 PMID: 20346676

37.

Xue D, Horvitz HR. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3

cleavage site in baculovirus p35 protein. Nature. 1995 Sep 21; 377(6546):248–51. https://doi.org/10.

1038/377248a0 PMID: 7675111

38.

Meier P, Silke J, Leevers SJ, Evan GI. The Drosophila caspase DRONC is regulated by DIAP1. EMBO

J. 2000 Feb 15; 19(4):598–611. https://doi.org/10.1093/emboj/19.4.598 PMID: 10675329

39.

Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, et al. Cross-talk between JNK/

SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem. 2003 Jul 18; 278(29):26715–21. https://doi.org/10.1074/jbc.M303264200 PMID:

12738796

40.

Katagiri C, Masuda K, Urano T, Yamashita K, Araki Y, Kikuchi K, et al. Phosphorylation of Ser-446

determines stability of MKP-7. J Biol Chem. 2005 Apr 15; 280(15):14716–22. https://doi.org/10.1074/

jbc.M500200200 PMID: 15689616

41.

Dorstyn L, Colussi PA, Quinn LM, Richardson H, Kumar S. DRONC, an ecdysone-inducible Drosophila

caspase. Proc Natl Acad Sci U S A. 1999 Apr 13; 96(8):4307–12. https://doi.org/10.1073/pnas.96.8.

4307 PMID: 10200258

42.

Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M. DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol. 2006 Oct; 26(19):7258–68. https://doi.org/10.1128/MCB.00183-06 PMID:

16980627

43.

Moreno E, Yan M, Basler K. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol. 2002 Jul 23; 12(14):1263–8.

https://doi.org/10.1016/s0960-9822(02)00954-5 PMID: 12176339

44.

Kuranaga E, Kanuka H, Igaki T, Sawamoto K, Ichijo H, Okano H, et al. Reaper-mediated inhibition of

DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nat Cell Biol. 2002 Sep;

4(9):705–10. https://doi.org/10.1038/ncb842 PMID: 12198495

45.

Shlevkov E, Morata G. A dp53/JNK-dependant feedback amplification loop is essential for the apoptotic

response to stress in Drosophila. Cell Death Differ. 2012 Mar; 19(3):451–60. https://doi.org/10.1038/

cdd.2011.113 PMID: 21886179

46.

Kurada P, White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell.

1998 Oct 30; 95(3):319–29. https://doi.org/10.1016/s0092-8674(00)81764-x PMID: 9814703

47.

Bergmann A, Agapite J, McCall K, Steller H. The Drosophila gene hid is a direct molecular target of

Ras-dependent survival signaling. Cell. 1998 Oct 30; 95(3):331–41. https://doi.org/10.1016/s00928674(00)81765-1 PMID: 9814704

48.

Decotto E, Spradling AC. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells

and signals. Dev Cell. 2005 Oct; 9(4):501–10. https://doi.org/10.1016/j.devcel.2005.08.012 PMID:

16198292

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010684 March 27, 2023

20 / 21

PLOS GENETICS

Shaping GSC-niche by Sas-Ptp10D via JNK-mediated apoptosis

49.

Kirilly D, Wang S, Xie T. Self-maintained escort cells form a germline stem cell differentiation niche.

Development. 2011 Dec; 138(23):5087–97. https://doi.org/10.1242/dev.067850 PMID: 22031542

50.

Hay BA, Wolff T, Rubin GM. Expression of baculovirus P35 prevents cell death in Drosophila. Development. 1994 Aug; 120(8):2121–9. https://doi.org/10.1242/dev.120.8.2121 PMID: 7925015

51.

Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila.

Genes Dev. 1998 Feb 15; 12(4):557–70. https://doi.org/10.1101/gad.12.4.557 PMID: 9472024

52.

Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, et al. Eiger, a TNF superfamily

ligand that triggers the Drosophila JNK pathway. EMBO J. 2002 Jun 17; 21(12):3009–18. https://doi.

org/10.1093/emboj/cdf306 PMID: 12065414

53.

Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila

eye. Cell. 1996 Nov 15; 87(4):651–60. https://doi.org/10.1016/s0092-8674(00)81385-9 PMID: 8929534

54.

Barolo S, Carver LA, Posakony JW. GFP and beta-galactosidase transformation vectors for promoter/

enhancer analysis in Drosophila. BioTechniques. 2000 Oct; 29(4):726, 8, 30, 32. https://doi.org/10.

2144/00294bm10 PMID: 11056799

55.

Ring JM, Martinez Arias A. puckered, a gene involved in position-specific cell differentiation in the dorsal

epidermis of the Drosophila larva. Dev Suppl. 1993:251–9. PMID: 8049480

56.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source

platform for biological-image analysis. Nat Methods. 2012 Jun 28; 9(7):676–82. https://doi.org/10.1038/

nmeth.2019 PMID: 22743772

57.

Kanda Y. Investigation of the freely available easy-to-use software ’EZR’ for medical statistics. Bone

Marrow Transplant. 2013 Mar; 48(3):452–8. https://doi.org/10.1038/bmt.2012.244 PMID: 23208313

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010684 March 27, 2023

21 / 21

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る