リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Developmental stage-specific exposure and neurotoxicity evaluation of low-dose clothianidin during neuronal circuit formation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Developmental stage-specific exposure and neurotoxicity evaluation of low-dose clothianidin during neuronal circuit formation

Shoda, Asuka Murata, Midori Kimura, Mako Hara, Yukako Yonoichi, Sakura Ishida, Yuya Mantani, Youhei Yokoyama, Toshifumi Hirano, Tetsushi Ikenaka, Yoshinori Tabuchi, Yoshiaki Hoshi, Nobuhiko 神戸大学

2023.04

概要

Neonicotinoid pesticides (NN) were recently reported to exhibit adverse effects in higher vertebrates. Moreover, NNs are routinely transferred from mother to offspring, raising concerns about their effects on future generations. The fetal and neonatal periods are the most critical to the formation of neural circuits in the brain through neurogenesis and differentiation, neuronal migration, axon guidance, and synaptogenesis. NN exposure throughout the fetal and neonatal periods was found to affect the neurobehavior of the offspring, but the stage-specific neurobehavioral effects are unclear. We exposed fetal and neonatal mice to a no-observed-adverse-effect level (NOAEL) of clothianidin (CLO) for 4 days during each of four developmental stages: neurite proliferation and differentiation (fetal days 9–12, CLO-1), neurite outgrowth (fetal days 15–18, CLO-2), synapse formation and astrocyte differentiation (days 1–4 after birth, CLO-3), and synapse remodeling (days 11–14 after birth, CLO-4). CLO’s neurobehavioral effects were evaluated in juveniles and adults, revealing that CLO-1 and CLO-2 caused behavioral abnormalities in adult mice. CLO-3 significantly increased locomotor activity and decreased juvenile neurons in the hippocampal dentate gyrus in adulthood. Comprehensive gene analysis of CLO-3 revealed high expression of genes related to neurite outgrowth and axonal branching in the hippocampus in juveniles and adults. These results revealed developmental stage-specific effects of a NOAEL of CLO in the fetal and neonatal periods, suggesting that the susceptibility of the fetus and neonate to CLO varies by developmental stage.

この論文で使われている画像

参考文献

1. Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG. 2010. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate

pesticides. Pediatrics 125: e1270–e1277. [Medline] [CrossRef]

2. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT.

2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611–622. [Medline]

[CrossRef]

3. Cisneros-Franco JM, Voss P, Thomas ME, de Villers-Sidani E. 2020. Critical periods of brain development. Handb Clin Neurol 173: 75–88. [Medline]

[CrossRef]

4. Costas-Ferreira C, Faro LRF. 2021. Neurotoxic effects of neonicotinoids on mammals: what is here beyond the activation of nicotinic acetylcholine

receptors? —a systematic review. Int J Mol Sci 22: 8413 [CrossRef]. [Medline]

5. Daston G, Faustman E, Ginsberg G, Fenner-Crisp P, Olin S, Sonawane B, Bruckner J, Breslin W, McLaughlin TJ. 2004. A framework for assessing

risks to children from exposure to environmental agents. Environ Health Perspect 112: 238–256. [Medline] [CrossRef]

6. EFSA Panel on Plant Protection Products and their Residues. 2013. Scientific Opinion on the developmental neurotoxicity potential of acetamiprid

and imidacloprid. EFSA Journal 11: 3471.

7. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, Montiel-Nava C, Patel V, Paula CS, Wang C, Yasamy MT, Fombonne E. 2012. Global

prevalence of autism and other pervasive developmental disorders. Autism Res 5: 160–179. [Medline] [CrossRef]

8. Farhy-Tselnicker I, Allen NJ. 2018. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev 13: 7. [Medline]

[CrossRef]

9. Fraser LM, Brown RE, Hussin A, Fontana M, Whittaker A, O’Leary TP, Lederle L, Holmes A, Ramos A. 2010. Measuring anxiety- and locomotionrelated behaviours in mice: a new way of using old tests. Psychopharmacology (Berl) 211: 99–112. [Medline] [CrossRef]

10. Gilbertson RJ, Barron S. 2005. Neonatal ethanol and nicotine exposure causes locomotor activity changes in preweanling animals. Pharmacol

Biochem Behav 81: 54–64 [CrossRef]. [Medline]

11. Hertz-Picciotto I, Sass JB, Engel S, Bennett DH, Bradman A, Eskenazi B, Lanphear B, Whyatt R. 2018. Organophosphate exposures during pregnancy

and child neurodevelopment: recommendations for essential policy reforms. PLoS Med 15: e1002671. [Medline] [CrossRef]

12. Hirano T, Yanai S, Takada T, Yoneda N, Omotehara T, Kubota N, Minami K, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. 2018.

NOAEL-dose of a neonicotinoid pesticide, clothianidin, acutely induce anxiety-related behavior with human-audible vocalizations in male mice in a

novel environment. Toxicol Lett 282: 57–63. [Medline] [CrossRef]

13. Hirano T, Yanai S, Omotehara T, Hashimoto R, Umemura Y, Kubota N, Minami K, Nagahara D, Matsuo E, Aihara Y, Shinohara R, Furuyashiki T,

Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. 2015. The combined effect of clothianidin and environmental stress on the behavioral and reproductive

function in male mice. J Vet Med Sci 77: 1207–1215. [Medline] [CrossRef]

14. Hirano T, Miyata Y, Kubo S, Ohno S, Onaru K, Maeda M, Kitauchi S, Nishi M, Tabuchi Y, Ikenaka Y, Ichise T, Nakayama SMM, Ishizuka M, Arizono

K, Takahashi K, Kato K, Mantani Y, Yokoyama T, Hoshi N. 2021. Aging-related changes in the sensitivity of behavioral effects of the neonicotinoid

pesticide clothianidin in male mice. Toxicol Lett 342: 95–103. [Medline] [CrossRef]

15. Hogg S. 1996. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54: 21–30

[CrossRef]. [Medline]

16. Hoshi N. 2021. Adverse effects of pesticides on regional biodiversity and their mechanisms. pp. 235–247. In. Risks and Regulation of New Technologies

(Matsuda T, Wolff J, Yanagawa T, eds.), Springer, Singapore.

17. Ichikawa G, Kuribayashi R, Ikenaka Y, Ichise T, Nakayama SMM, Ishizuka M, Taira K, Fujioka K, Sairenchi T, Kobashi G, Bonmatin JM, Yoshihara

S. 2019. LC-ESI/MS/MS analysis of neonicotinoids in urine of very low birth weight infants at birth. PLoS One 14: e0219208. [Medline] [CrossRef]

18. Ikenaka Y, Miyabara Y, Ichise T, Nakayama S, Nimako C, Ishizuka M, Tohyama C. 2019. Exposures of children to neonicotinoids in pine wilt disease

control areas. Environ Toxicol Chem 38: 71–79. [Medline] [CrossRef]

19. Kimura E, Endo T, Yoshioka W, Ding Y, Ujita W, Kakeyama M, Tohyama C. 2016. In utero and lactational dioxin exposure induces Sema3b and

Sema3g gene expression in the developing mouse brain. Biochem Biophys Res Commun 476: 108–113. [Medline] [CrossRef]

20. Kimura-Kuroda J, Nagata I, Kuroda Y. 2007. Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of

cerebellar Purkinje cells: a possible causal factor for developmental brain disorders? Chemosphere 67: S412–S420. [Medline] [CrossRef]

21. Kitauchi S, Maeda M, Hirano T, Ikenaka Y, Nishi M, Shoda A, Murata M, Mantani Y, Yokoyama T, Tabuchi Y, Hoshi N. 2021. Effects of in utero and

lactational exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid clothianidin on the reproductive organs of female

mice. J Vet Med Sci 83: 746–753. [Medline] [CrossRef]

22. Maeda M, Yokoyama T, Kitauchi S, Hirano T, Mantani Y, Tabuchi Y, Hoshi N. 2021. Influence of acute exposure to a low dose of systemic insecticide

fipronil on locomotor activity and emotional behavior in adult male mice. J Vet Med Sci 83: 344–348. [Medline] [CrossRef]

23. Maeda M, Kitauchi S, Hirano T, Ikenaka Y, Nishi M, Shoda A, Murata M, Mantani Y, Tabuchi Y, Yokoyama T, Hoshi N. 2021. Fetal and lactational

J. Vet. Med. Sci. 85(4): 486–496, 2023

495

A SHODA ET AL.

24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid pesticide clothianidin inhibits neurogenesis and induces different

behavioral abnormalities at the developmental stages in male mice. J Vet Med Sci 83: 542–548. [Medline] [CrossRef]

Meaney MJ. 2001. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev

Neurosci 24: 1161–1192. [Medline] [CrossRef]

Nakayama A, Yoshida M, Kagawa N, Nagao T. 2019. The neonicotinoids acetamiprid and imidacloprid impair neurogenesis and alter the microglial

profile in the hippocampal dentate gyrus of mouse neonates. J Appl Toxicol 39: 877–887. [Medline] [CrossRef]

Nishi M, Sugio S, Hirano T, Kato D, Wake H, Shoda A, Murata M, Ikenaka Y, Tabuchi Y, Mantani Y, Yokoyama T, Hoshi N. 2022. Elucidation of the

neurological effects of clothianidin exposure at the no-observed-adverse-effect level (NOAEL) using two-photon microscopy in vivo imaging. J Vet

Med Sci 84: 585–592. [Medline] [CrossRef]

Ohno S, Ikenaka Y, Onaru K, Kubo S, Sakata N, Hirano T, Mantani Y, Yokoyama T, Takahashi K, Kato K, Arizono K, Ichise T, Nakayama SMM,

Ishizuka M, Hoshi N. 2020. Quantitative elucidation of maternal-to-fetal transfer of neonicotinoid pesticide clothianidin and its metabolites in mice.

Toxicol Lett 322: 32–38. [Medline] [CrossRef]

Oya N, Ito Y, Ebara T, Kato S, Ueyama J, Aoi A, Nomasa K, Sato H, Matsuki T, Sugiura-Ogasawara M, Saitoh S, Kamijima M. 2021. Cumulative

exposure assessment of neonicotinoids and an investigation into their intake-related factors in young children in Japan. Sci Total Environ 750: 141630

[CrossRef]. [Medline]

Rice D, Barone S Jr. 2000. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ

Health Perspect 108 Suppl 3: 511–533. [Medline]

Roberts JR, Karr CJ. Council On Environmental Health. 2012. Pesticide exposure in children. Pediatrics 130: e1765–e1788. [Medline] [CrossRef]

Roberts JR, Dawley EH, Reigart JR. 2019. Children’s low-level pesticide exposure and associations with autism and ADHD: a review. Pediatr Res

85: 234–241. [Medline] [CrossRef]

Rodier PM. 1994. Vulnerable periods and processes during central nervous system development. Environ Health Perspect 102 Suppl 2: 121–124.

[Medline]

Sano K, Isobe T, Yang J, Win-Shwe TT, Yoshikane M, Nakayama SF, Kawashima T, Suzuki G, Hashimoto S, Nohara K, Tohyama C, Maekawa

F. 2016. In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice. Front

Neurosci 10: 228. [Medline] [CrossRef]

Shoda A, Nishi M, Murata M, Mantani Y, Yokoyama T, Hirano T, Ikenaka Y, Hoshi N. 2023. Quantitative elucidation of the transfer of the neonicotinoid

pesticide clothianidin to the breast milk in mice. Toxicol Lett 373: 33–40. [Medline] [CrossRef]

Syme MR, Paxton JW, Keelan JA. 2004. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 43: 487–514. [Medline] [CrossRef]

Thion MS, Garel S. 2017. On place and time: microglia in embryonic and perinatal brain development. Curr Opin Neurobiol 47: 121–130. [Medline]

[CrossRef]

Thomas JD, Garrison ME, Slawecki CJ, Ehlers CL, Riley EP. 2000. Nicotine exposure during the neonatal brain growth spurt produces hyperactivity

in preweanling rats. Neurotoxicol Teratol 22: 695–701. [Medline] [CrossRef]

Tomizawa M, Casida JE. 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45: 247–268.

[Medline] [CrossRef]

Ueyama J, Harada KH, Koizumi A, Sugiura Y, Kondo T, Saito I, Kamijima M. 2015. Temporal levels of urinary neonicotinoid and dialkylphosphate

concentrations in Japanese women between 1994 and 2011. Environ Sci Technol 49: 14522–14528.[CrossRef]

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RTPCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034. [Medline]

Wang Y, Wang L, Zhu Y, Qin J. 2018. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 18: 851–860. [Medline]

[CrossRef]

Wiersielis KR, Adams S, Yasrebi A, Conde K, Roepke TA. 2020. Maternal exposure to organophosphate flame retardants alters locomotor and

anxiety-like behavior in male and female adult offspring. Horm Behav 122: 104759. [Medline] [CrossRef]

Zhou L, Tao X, Pang G, Mu M, Sun Q, Liu F, Hu Y, Tao H, Li B, Xu K. 2021. Maternal nicotine exposure alters hippocampal microglia polarization

and promotes anti-inflammatory signaling in juvenile offspring in mice. Front Pharmacol 12: 661304. [Medline] [CrossRef]

J. Vet. Med. Sci. 85(4): 486–496, 2023

496

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る