リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「成獣ライディッヒ細胞における性染色体の機能解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

成獣ライディッヒ細胞における性染色体の機能解析

柳井, 翔吾 YANAI, Shogo ヤナイ, ショウゴ 九州大学

2022.03.23

概要

The sex-determ ining gene Sry induces testis development even in chromosomally female (XX) individuals. The XX/Sry testes are apparently normal and the interstitial space of the testes is filled with a large number of L eydig cells, which are essential for masculinization thr ough testoster one production. As for the function, XX/Sry Leydig cells were reported to pr oduc e less testoster one than the XY cells, and the reason for the decr eased activity of testosterone production in XX/ Sry L eydig cells rem ains unclear. To explore it, I perform ed transcriptom ic an alysis of XY and XX/Sry adult Leydig cells (ALCs) and found that cholester ogenic genes wer e upregulated while immediate ear ly genes and ALC-enriched genes wer e downregulated. In addition, of the six genes r equir ed for testosterone production, four wer e downr egulated. To investigate whether these transcriptional changes affected ster oid synthesis, I carried out a collaboration to quantify all intermediates of the testoster one synthetic pathway. The result showed that the am ount of 17α-hydroxypregnenolone in the XX/ Sry testes was significantly larger than that in the XY testes, while that of androstenedione in the XX/ Sry testes was smaller than that in the XY testes, strongly suggesting that 17, 20-lyase activity of CYP17A1 was substantially reduced in the XX/Sry testes. Another activity of CYP 17A1, 17α-hydr oxylation, was not likely to be affected. Activities of other steroidogenic enzym es including HSD3B and HSD17B were also not. Taken together, these results showed that the poor testosterone production in XX/Sry testes is possibly attributable to dysregulation of CYP 17A1 enzymatic activity rather than the expression levels of ster oidogenic enzymes.
 Next, I explor ed how the sex chr om osomes impact differential transcription between XY and XX/ Sry ALCs. I focused on epigenetic modification because the loss of Y chrom osom e and gain of extra X chromosome lead to loss of Uty and Smcy, and gain of extra Utx and Smcx, respectively. These genes on the sex chr om osom es enc ode histone dem ethylases. To examine the possibility that the sex chr om osome composition affects histone methylation status, I c om pared H 3K4m e3 and H 3K27m e3 profiles between XY and XX/Sry ALCs. This result showed that H 3K4m e3 (but not H3K27m e3) levels at the loci of cholester ogenic genes wer e consistently and significantly high in XX/Sry ALCs. Both H3K4me3 and H 3K27me3 levels at the loci of immediate early genes and ALC-enriched genes were not largely changed. These results showed that some of the differentially expressed genes including cholester ogenic genes wer e accompanied by changes of the histone methylation while others were independent of the histone methylation.
 Finally, I exam ined the role of UTY in transcr iptional regulation. Transcriptomic analyses of wild type and Uty-knockout (KO) ALCs demonstrated that expression of the immediate early genes and ALC-enriched genes was generally decreased in Uty-KO ALCs wher eas that of cholesterogenic genes was not affected, suggesting that the transcriptional changes in XX/ Sry ALCs are partially attributable to the lack of Uty. Considering that the histone methylation was unlikely to be corr elated with the decreased expression of the imm ediate early genes and AL C-enriched genes in XX/Sry ALCs, UTY may regulate expr ession of these genes in the histone methylation-independent manners.

この論文で使われている画像

参考文献

Agulnik, A.I., Mitchell, M.J., Mattei, M.G., Borsani, G., Avner, P.A., Lerner, J.L., and Bishop, C.E. (1994). A novel X gene with a widely transcribed Y-linked homologue escapes X-inactivation in mouse and human. Hum. Mol. Genet. 3, 879–884.

Albrecht, K.H., and Eicher, E.M. (2001). Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev. Biol. 240, 92– 107.

Ariyaratne, H.B., and Mendis-Handagama, S.C. (2000). Changes in the Testis Interstitium of Sprague Dawley Rats from Birth to Sexual Maturity. Biol. Reprod. 62, 680–690.

Baba, T., Otake, H., Inoue, M., Sato, T., Ishihara, Y., Moon, J.-Y., Tsuchiya, M., Miyabayashi, K., Ogawa, H., Shima, Y., et al. (2018). Ad4BP/SF-1 regulates cholesterol synthesis to boost the production of steroids. Commun. Biol. 1, 18.

Bagheri-Fam, S., Chen, H., Wilson, S., Ayers, K., Hughes, J., Sloan-Bena, F., Calvel, P., Robevska, G., Puisac, B., Kusz-Zamelczyk, K., et al. (2020). The gene encoding the ketogenic enzyme HMGCS2 displays a unique expression during gonad development in mice. PLoS One 15, e0227411.

Bakke, M., and Lund, J. (1995). Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3’,5’-monophosphate-responsive sequence in the bovine CYP17 gene. Mol. Endocrinol. 9, 327–339.

Berletch, J.B., Ma, W., Yang, F., Shendure, J., Noble, W.S., Disteche, C.M., and Deng, X. (2015). Escape from X inactivation varies in mouse tissues. PLoS Genet. 11, e1005079. Borisova, M.E., Voigt, A., Tollenaere, M.A.X., Sahu, S.K., Juretschke, T., Kreim, N., Mailand, N., Choudhary, C., Bekker-Jensen, S., Akutsu, M., et al. (2018). p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9, 1017.

Bullejos, M., and Koopman, P. (2001). Spatially dynamic expression of Sry in mouse genital ridges. Dev. Dyn. 221, 201–205.

Burgoyne, P.S., Levy, E.R., and McLaren, A. (1986). Spermatogenic failure in male mice lacking H–Y antigen. Nature 320, 170–172.

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622.

Cho, Y.-W., Hong, T., Hong, S., Guo, H., Yu, H., Kim, D., Guszczynski, T., Dressler, G.R., Copeland, T.D., Kalkum, M., et al. (2007). PTIP associates with MLL3- and MLL4- containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282, 20395– 20406.

Dimitrova, E., Turberfield, A.H., and Klose, R.J. (2015). Histone demethylases in chromatin biology and beyond. EMBO Rep. 16, 1620–1639.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2012). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R.J., Luo, Y., and Han, J. (2002). MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295, 1291–1294.

Gerena, R.L., Eguchi, N., Urade, Y., and Killian, G.J. (2000). Stage and Region-Specific Localization of Lipocalin-Type Prostaglandin D Synthase in the Adult Murine Testis and Epididymis. J. Androl. 21, 848‒854.

Gozdecka, M., Meduri, E., Mazan, M., Tzelepis, K., Dudek, M., Knights, A.J., Pardo, M., Yu, L., Choudhary, J.S., Metzakopian, E., et al. (2018). UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894.

Greenfield, A., Carrel, L., Pennisi, D., Philippe, C., Quaderi, N., Siggers, P., Steiner, K., Tam, P.P., Monaco, A.P., Willard, H.F., et al. (1998). The UTX gene escapes X inactivation in mice and humans. Hum. Mol. Genet. 7, 737–742.

Guo, I.-C., Huang, C.-Y., Wang, C.-K. L., and Chung, B.-C. (2007). Activating Protein-1 Cooperates with Steroidogenic Factor-1 to Regulate 3 ′ ,5 ′ -Cyclic Adenosine 5 ′ - Monophosphate-Dependent Human CYP11A1 Transcription in Vitro and in Vivo. Endocrinology 148, 1804‒1812.

Hayashi-Takanaka, Y., Yamagata, K., Wakayama, T., Stasevich, T.J., Kainuma, T., Tsurimoto, T., Tachibana, M., Shinkai, Y., Kurumizaka, H., Nozaki, N., et al. (2011). Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res. 39, 6475–6488.

Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Tsunekawa, N., Katoh-Fukui, Y., Kurohmaru, M., Morohashi, K.-I., Wilhelm, D., Koopman, P., and Kanai, Y. (2009). A critical time window of Sry action in gonadal sex determination in mice. Development 136, 129–138.

Honda, S., Morohashi, K., Nomura, M., Takeya, H, Kitajima, M., and Omura, T. (1993). Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J. Biol. Chem. 268, 7494–7502.

Hong, S.-H., Cho, Y.-W., Yu, L.-R., Yu, H., Veenstra, T.D., and Ge, K. (2007).

Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl. Acad. Sci. U. S. A. 104, 18439–18444.

Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131.

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44– 57.

Huhtaniemi, I., Ahtiainen, P., Pakarainen, T., Rulli, S.B., Zhang, F.-P., and Poutanen, M. (2006). Genetically modified mouse models in studies of luteinising hormone action. Mol. Cell. Endocrinol. 252, 126–135.

Ikonen, E. (2008). Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138.

Ishii, M., Tachiwana, T., Hoshino, A., Tsunekawa, N., Hiramatsu, R., Matoba, S., Kanai- Azuma, M., Kawakami, H., Kurohmaru, M., and Kanai, Y. (2006). Potency of testicular somatic environment to support spermatogenesis in XX/Sry transgenic male mice. Development 134, 449–454.

Kalisz, M., Bernardo, E., Beucher, A., Maestro, M.A., Del Pozo, N., Millán, I., Haeberle, L., Schlensog, M., Safi, S.A., Knoefel, W.T., et al. (2020). HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO J. 39, e102808.

Kang, Z., Qiao, N., Tan, Z., Tang, Z., and Li, Y. (2017). Expression patterns and changes of the LCN2 gene in the testes of induced cryptorchidism and busulfan-treated mice. Syst. Biol. Reprod. Med. 63, 364–369.

Kashimada, K., and Koopman P. (2010). Sry: the master switch in mammalian sex determination. Development 137, 3921–3930.

Katagiri, M., Kagawa, N., and Waterman, M.R. (1995). The Role of Cytochrome b5 in the Biosynthesis of Androgens by Human P450c17. Arch. Biochem. Biophys. 317, 343–347.

Kato, T., Hara, S., Goto, Y., Ogawa, Y., Okayasu, H., Kubota, S., Tamano, M., Terao, M., and Takada, S. (2017). Creation of mutant mice with megabase-sized deletions containing custom-designed breakpoints by means of the CRISPR/Cas9 system. Sci. Rep. 7, 59.

Kempná, P., Hirsch, A., Hofer, G., Mullis, P.E., and Flück, C.E. (2010). Impact of differential P450c17 phosphorylation by cAMP stimulation and by starvation conditions on enzyme activities and androgen production in NCI-H295R cells. Endocrinology 151, 3686–3696.

Kerr, J.B., and Knell, C.M. (1988). The fate of fetal Leydig cells during the development of the fetal and postnatal rat testis. Development 103, 535–544.

Kidokoro, T., Matoba, S., Hiramatsu, R., Fujisawa, M., Kanai-Azuma, M., Taya, C., Kurohmaru, M., Kawakami, H., Hayashi, Y., Kanai, Y., et al. (2005). Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev. Biol. 278, 511–525.

Kim, J.-H., Sharma, A., Dhar, S.S., Lee, S.-H., Gu, B., Chan, C.-H., Lin, H.-K., and Lee, M.G. (2014). UTX and MLL4 Coordinately Regulate Transcriptional Programs for Cell Proliferation and Invasiveness in Breast Cancer Cells. Cancer Res. 74, 1705–1717. Kinoshita, E., and Kinoshita-Kikuta, E. (2011). Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11, 319–323.

Koga, M., Tanaka, H., Yomogida, K., Tsuchida, J., Uchida, K., Kitamura, M., Sakoda, S., Matsumiya, K., Okuyama, A., and Nishimune, Y. (1998). Expression of Selenoprotein- P Messenger Ribonucleic Acid in the Rat Testis. Biol. Reprod. 58, 261–265.

Kominami, S., Noriyuki, O., Reiko, M., Huang, D.-Y., and Shigeki, T. (1992). The role of cytochrome b5 in adrenal microsomal steroidogenesis. J. Steroid Biochem. Mol. Biol. 42, 57–64.

Koopman, P., Münsterberg, A., Capel, B., Vivian, N., and Lovell-Badge, R. (1990). Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348, 450–452.

Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121. Kuroki, S., Matoba, S., Akiyoshi, M., Matsumura, Y., Miyachi, H., Mise, N., Abe, K.,

Ogura, A., Wilhelm, D., Koopman, P., et al. (2013). Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341, 1106–1109.

Lala, D.S., Rice, D.A., and Parker, K.L. (1992). Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol. Endocrinol. 6, 1249–1258.

Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., et al. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.

Leers-Sucheta, S., Morohashi, K., Mason, K.I., and Melner, M.H. (1997). Synergistic Activation of the Human Type II 3β-Hydroxysteroid Dehydrogenase/Δ 5 -Δ 4 Isomerase Promoter by the Transcription Factor Steroidogenic Factor-1/Adrenal 4- binding Protein and Phorbol Ester. J. Biol. Chem. 272, 7960–7967.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079.

Li, X., Wang, Z., Jiang, Z., Guo, J., Zhang, Y., Li, C., Chung, J., Folmer, J., Liu, J., Lian, Q., et al. (2016). Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes. Proc. Natl. Acad. Sci. U. S. A. 113, 2666–2671.

Liao, Y., Smyth, G.K., and Shi, W. (2013). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923– 930.

Lin, D., Black, S.M., Nagahama, Y., and Miller, W.L. (1993). Steroid 17 alpha- hydroxylase and 17,20-lyase activities of P450c17: contributions of serine106 and P450 reductase. Endocrinology 132, 2498–2506.

Manna, P.R., Wang, X.-J., and Stocco, D.M. (2003). Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68, 1125–1134.

Manna, P.R., and Stocco, D.M. (2008). The role of JUN in the regulation of PRKCC- mediated STAR expression and steroidogenesis in mouse Leydig cells. J. Mol. Endocrinol. 41, 329–341.

Martin, L.J., Taniguchi, H., Robert, N.M., Simard, J., Tremblay, J.J., and Viger, R.S. (2005). GATA Factors and the Nuclear Receptors, Steroidogenic Factor 1/Liver Receptor Homolog 1, Are Key Mutual Partners in the Regulation of the Human 3β- Hydroxysteroid Dehydrogenase Type 2 Promoter. Mol. Endocrinol. 19, 2358–2370.

Martin, L.J., and Tremblay, J.J. (2008). Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1. J. Mol. Endocrinol. 41, 165–175.

Matzuk, M.M., DeMayo, F.J., Hadsell, L.A., and Kumar, T.R. (2003). Overexpression of human chorionic gonadotropin causes multiple reproductive defects in transgenic mice. Biol. Reprod. 69, 338–346.

McFarlane, L., Truong, V., Palmer, J.S., and Wilhelm, D. (2013). Novel PCR Assay for Determining the Genetic Sex of Mice. Sex Dev. 7, 207–211.

Michael, M.D., Kilgore, M.W., Morohashi, K., and Simpson, E.R. (1995). Ad4BP/SF-1 Regulates Cyclic AMP-induced Transcription from the Proximal Promoter (PII) of the Human Aromatase P450 ( CYP19 ) Gene in the Ovary. J. Biol. Chem. 270, 13561– 13566.

Miyabayashi, K., Shima, Y., Inoue, M., Sato, T., Baba, T., Ohkawa, Y., Suyama, M., and Morohashi, K. (2017). Alterations in Fetal Leydig Cell Gene Expression during Fetal and Adult Development. Sex Dev. 11, 53–63.

Miyabayashi, K., Tokunaga, K, Otake, H., Baba, T., Shima, Y., and Morohashi, K. (2015). Heterogeneity of Ovarian Theca and Interstitial Gland Cells in Mice. PLoS One 10, e0128352.

Miyawaki, S., Kuroki, S., Maeda, R., Okashita, N., Koopman, P., and Tachibana, M. (2020). The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 370, 121–124.

Mizutani, T., Ju, Y., Imamichi, Y., Osaki, T., Yazawa, T., Kawabe, S., Ishikane, S.,

Matsumura, T., Kanno, M., Kamiki, Y., et al. (2014). C/EBPβ (CCAAT/enhancer- binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1). Biochem. J. 460, 459–471.

Moon, J.-Y., Lee, H.S., Kim, J.H., Lee, J.H., and Choi, M.H. (2018). Supported liquid extraction coupled to gas chromatography-selective mass spectrometric scan modes for serum steroid profiling. Anal. Chim. Acta 1037, 281–292.

Morohashi, K., Baba, T., and Tanaka, M. (2013). Steroid Hormones and the Development of Reproductive Organs. Sex Dev. 7, 61–79.

Morohashi, K., Honda, S., Inomata, Y., Handa, H., and Omura, T. (1992). A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J. Biol. Chem. 267, 17913–17919.

Morohashi, K., Iida, H., Nomura, M., Hatano, O., Honda, S., Tsukiyama, T., Niwa, O., Hara, T., Takakusu, A., and Shibata, Y. (1994). Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues. Mol. Endocrinol. 8, 643–653. Morohashi, K., and Omura, T. (1996). Ad4BP/SF-1, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function. FASEB J. 10, 1569–1577.

Naito, Y., Hino, K., Bono, H., and Ui-Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123.

Nakajin, S., Shively, J.E., Yuan, P.M., and Hall, P.F. (1981). Microsomal cytochrome P- 450 from neonatal pig testis: two enzymatic activities (17 alpha-hydroxylase and c17,20-lyase) associated with one protein. Biochemistry 20, 4037–4042.

Nuclear Receptors Nomenclature Committee (1999). A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell 97, 161–163.

Onoda, M., and Hall, P.F. (1982). Cytochrome b5 stimulates purified testicular microsomal cytochrome P-450 (C21 side-chain cleavage). Biochem. Biophys. Res. Commun. 108, 454–460.

Ota, K., Komuro, A., Amano, H., Kanai, A., Ge, K., Ueda, T., and Okada, H. (2019). High Fat Diet Triggers a Reduction in Body Fat Mass in Female Mice Deficient for Utx demethylase. Sci. Rep. 9, 10036.

O’Shaughnessy, P.J., Willerton, L., and Baker, P.J. (2002). Changes in Leydig Cell Gene Expression During Development in the Mouse. Biol. Reprod. 66, 966–975.

Pandey, A.V., Mellon, S.H., and Miller, W.L. (2003). Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J. Biol. Chem. 278, 2837–2844.

Pandey, A.V., and Miller, W.L. (2005). Regulation of 17,20 Lyase Activity by Cytochrome b 5 and by Serine Phosphorylation of P450c17. J. Biol. Chem. 280, 13265–13271.

Parker, K.L., and Schimmer, B.P. (1997). Steroidogenic Factor 1: A Key Determinant of Endocrine Development and Function. Endocr. Rev. 18, 361–377.

Pérez-Cadahía, B., Drobic, B., and Davie, J.R. (2011). Activation and function of immediate-early genes in the nervous system Biochem. Cell Biol. 89, 61–73.

Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., and Manke, T. (2016). deepTools2: a next generation web server for deep- sequencing data analysis. Nucleic Acids Res. 44, W160-5.

Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

Royo, T., Pedragosa, M.J. Ayté, J., Gil-Gómez, G., Vilaró, S., and Hegardt, F.G. (1993). Testis and ovary express the gene for the ketogenic mitochondrial 3-hydroxy-3- methylglutaryl-CoA synthase. J. Lipid Res. 34, 867–874.

Rulli, S.B., Ahtiainen, P., Mäkelä, S., Toppari, J., Poutanen, M., and Huhtaniemi, I. (2003). Elevated steroidogenesis, defective reproductive organs, and infertility in transgenic male mice overexpressing human chorionic gonadotropin. Endocrinology 144, 4980– 4990.Sato, Y., Baba, T., Zubair, M., Miyabayashi, K., Toyama, Y., Maekawa, M., Owaki, A., Mizusaki, H., Sawamura, T., Toshimori, K., et al. (2008). Importance of forkhead transcription factor Fkhl18 for development of testicular vasculature. Mol. Reprod. Dev. 75, 1361–1371.

Schultz, R., Kononen, J., and Pelto-Huikko, M. (1995). Induction of immediate early gene mRNAs and proteins by hCG in interstitial cells of rat testis. J. Endocrinol. 144, 417– 424.

Seo, Y.-K., Jeon, T.-I. Chong, H.K., Biesinger, J., Xie, X., and Osborne, T.F. (2011). Genome-wide Localization of SREBP-2 in Hepatic Chromatin Predicts a Role in Autophagy. Cell Metab. 13, 367–375.

Sewer, M.B., Nguyen, V.Q., Huang, C.-J., Tucker, P.W., Kagawa, N., and Waterman, M.R. (2002). Transcriptional Activation of Human CYP17 in H295R Adrenocortical Cells Depends on Complex Formation among p54 nrb /NonO, Protein-Associated Splicing Factor, and SF-1, a Complex That Also Participates in Repression of Transcription. Endocrinology 143, 1280–1290.

Shima, Y., Matsuzaki, S., Miyabayashi, K., Otake, H., Baba, T., Kato, S., Huhtaniemi, I., and Morohashi, K. (2015). Fetal Leydig Cells Persist as an Androgen-Independent Subpopulation in the Postnatal Testis. Mol. Endocrinol. 29, 1581–1593.

Shima, Y., Miyabayashi, K., Haraguchi, S., Arakawa, T., Otake, H., Baba, T., Matsuzaki, S., Shishido, Y., Akiyama, H., Tachibana, T., et al. (2012). Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol. Endocrinol. 27, 63– 73.

Shinzawa, K., Ishibashi, S., Murakoshi, M., Watanabe, K., Kominami, S., Kawahara, A., and Takemori, S. (1988). Relationship between zonal distribution of microsomal cytochrome P-450s (P-450(17)alpha,lyase and P-450C21) and steroidogenic activities in guinea-pig adrenal cortex. J. Endocrinol. 119, 191–200.

Shishido, Y., Baba, T., Sato, T., Shima, Y., Miyabayashi, K., Inoue, M., Akiyama, H., Kimura, H., Kanai, Y., Ishihara, Y., et al. (2017). Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells. Sci. Rep. 7, 41912.

Shpargel, K.B., Sengoku, T., Yokoyama, S., and Magnuson, T. (2012). UTX and UTY Demonstrate Histone Demethylase-Independent Function in Mouse Embryonic Development. PLoS Genet. 8, e1002964

Skene, P.J., and Henikoff, S. (2017). An efficient targeted nuclease strategy for high- resolution mapping of DNA binding sites. Elife 6, e21856.

Sondhi, V., Owen, B.M., Liu, J., Chomic, R., Kliewer, S.A., Hughes, B.A., Arlt, W., Mangelsdorf, D.J., and Auchus, R.J. (2016). Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells. Mol. Endocrinol. 30, 469–478.

Supek, F., Bošnjak, M., Škunca, N., and Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS One 6, e21800.

Tee, M.K., and Miller, W.L. (2013). Phosphorylation of Human Cytochrome P450c17 by p38α Selectively Increases 17,20 Lyase Activity and Androgen Biosynthesis. J. Biol. Chem. 288, 23903–23913.

Teerds, K.J., and Huhtaniemi, I. (2015). Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum. Reprod. Update 21, 310–328.

Uhler, M.D., and McKnight, G.S. (1987). Expression of cDNAs for two isoforms of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 262, 15202– 15207.

Vorona, E., Zitzmann, M., Gromoll, J., Schüring, A.N., and Nieschlag, E. (2007). Clinical, endocrinological, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. J. Clin. Endocrinol. Metab. 92, 3458–3465.

Walport, L.J., Hopkinson, R.J., Vollmar, M., Madden, S.K., Gileadi, C., Oppermann, U., Schofield, C.J., and Johansson, C. (2014). Human UTY(KDM6C) Is a Male-specific Nϵ-Methyl Lysyl Demethylase. J. Biol. Chem. 289, 18302–18313.

Wang, C., Lee, J.-E., Cho, Y.-W., Xiao, Y., Jin, Q., Liu, C., and Ge, K. (2012). UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc. Natl. Acad. Sci. U. S. A. 109, 15324–15329.

Wang, S.P., Tang, Z., Chen, C.-W., Shimada, M., Koche, R.P., Wang, L.-H., Nakadai, T., Chramiec, A., Krivtsov, A.V., Armstrong, S.A., et al. (2017). A UTX-MLL4-p300 Transcriptional Regulatory Network Coordinately Shapes Active Enhancer Landscapes for Eliciting Transcription. Mol. Cell 67, 308–321.

Xu, B., Mulvey, B., Salie, M., Yang, X., Matsui, Y., Nityanandam, A., Fan, Y., and Peng, J.C. (2020). UTX/KDM6A suppresses AP-1 and a gliogenesis program during neural differentiation of human pluripotent stem cells. Epigenetics Chromatin 13, 38.

Yamamura, K., Doi, M., Hayashi, H., Ota, T., Murai, I., Hotta, Y., Komatsu, R., and Okamura, H. (2014). Immunolocalization of murine type VI 3β-hydroxysteroid dehydrogenase in the adrenal gland, testis, skin, and placenta. Mol. Cell. Endocrinol. 382, 131–138.

Yanagibashi, K., and Hall, P.F. (1986). Role of electron transport in the regulation of the lyase activity of C21 side-chain cleavage P-450 from porcine adrenal and testicular microsomes. J. Biol. Chem. 261, 8429–8433.

Zhang, L.H., Rodriguez, H., Ohno, S., and Miller W.L. (1995). Serine phosphorylation of human P450c17 increases 17,20-lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc. Natl. Acad. Sci. U. S. A. 92, 10619–10623.

Zhang, P., and Mellon, S.H. (1996). The orphan nuclear receptor steroidogenic factor-1 regulates the cyclic adenosine 3’,5’-monophosphate-mediated transcriptional activation of rat cytochrome P450c17 (17 alpha-hydroxylase/c17-20 lyase). Mol. Endocrinol. 10, 147–158.

Zhao, Y., Xia, Q., Liu, Y., Bai, W., Yao, Y., Ding, J., Lin, L., Xu, Z., Cai, Z., Wang, S., et al. (2019). TCF7L2 and EGR1 synergistic activation of transcription of LCN2 via an ERK1/2-dependent pathway in esophageal squamous cell carcinoma cells. Cell. Signal. 55, 8–16.

Zhu, Q., Liu, N., Orkin, S.H., and Yuan, G.-C. (2019). CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis. Genome Biol. 20, 192.

Zuber, M., Simpson, E., and Waterman, M.R. (1986). Expression of bovine 17 alpha- hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells. Science 234, 1258–1261.

参考文献をもっと見る