リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pfkfb3とPdk4遺伝子による骨格筋のATP産生におけるオスが好む解糖系とメスが好む脂肪酸の利用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pfkfb3とPdk4遺伝子による骨格筋のATP産生におけるオスが好む解糖系とメスが好む脂肪酸の利用

アントニアス, クリスティアント ANTONIUS, CHRISTIANTO 九州大学

2022.02.28

概要

Skeletal muscles are comprised of several types of fibers characterized in part by their preferential energy production. Skeletal muscles exhibit sexually dimorphic features. As for the biochemical features, glycolysis and fatty acid β-oxidation are predominately active in the muscles of males and females, respectively. However, the mechanisms underlying of the preferential utilization of these fuels remains elusive. The aim of this study is to investigate the possible mechanism causing the sexual dimorphism in the energy metabolism of muscle fiber type IIB.

Mice were gonadectomized and thereafter treated with sex steroids. Type IIB fiber s of quadriceps muscles were used for transcriptome analysis. Eventually, I obtained transcriptomes from the fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. 68 and 60 genes were obtained as m ale-enriched and fem ale-enriched genes, respectively. Gene ontology analyses revealed that the male-enriched genes are related to broad range of metabolic processes, while the female-enriched genes are related to extracellular matrix.

Furthermore, analyses of the transcriptomes resulted in finding of two genes, Pfk fb3 (phosphofructokinase-2) and Pdk 4 (pyruvate dehydrogenase kinase 4), that may function as switches between the sexually dimorphic metabolic pathways, male-preferred glycolysis and female-p referred fatty acid β-oxidation. Interestingly, Pfk fb3 and Pdk 4 exhibit ma le -enriched and estradiol-enhanced expression, respectively. Additionally, the contribution of these genes to sexually dimorphic metabolism is demonstrated by knockdown studies with cultured type IIB muscle fibers. Taking into consideration that skeletal muscles as a whole are the largest energy-consuming organs, our results provide insights into energy metabolism in the two sexes, during the estrus cycle in women/ female, and under pathological conditions involving skeletal muscles.

参考文献

Aizawa, K. et al. Sex differences in steroidogenesis in skeletal muscle following a single bout of exercise in rats. J. Appl. Physiol. 104, 67-74 doi:10.1152/japplphysiol.00558.2007 (2008).

Alderman, M. H. & Taylor, H. S. Molecular mechanisms of estrogen action in female genital tract development. Differentiation. 118, 34-40 doi: 10.1016/j.diff.2021.01.002 (2021).

Almacellas, E. et al. Phosphofructokinases Axis Controls Glucose-Dependent mTORC1 Activation Driven by E2F1. iScience. 20, 434-448 doi:10.1016/j.isci.2019.09.040 (2019).

Augusto, V., Padovani, C. R. & Campos, G. E. R. Skeletal Muscle Fiber Types in C57BL6J Mice. Brazilian J. Morphol. Sci. 21, 89-94 (2004).

Axell, A. M. et al. Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am. J. Physiol. - Endocrinol. Metab. 291, E506-E516 doi:10.1152/ajpendo.00058.2006 (2006).

Bachman, J. F. et al. Prepubertal skeletal muscle growth requires Pax7-expressing satellite cell-derived myonuclear contribution. Development. 145, 1-13 doi:10.1242/dev.167197 (2018).

Ball-Burnett, M., Green, H. J., & Houston, M. E. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J. Physiol. 437, 257-267 doi:10.1113/jphysiol.1991.sp018594 (1991).

Behr, S. C., Courtier, J. L., & Qayyum, A. Imaging of mullerian duct anomalies. Radiographics. 32, E233-250 doi:10.1148/rg.326125515 (2012).

Berchtold, M. W., Brinkmeier, H. & Müntener, M. Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80, 1215- 1265 doi:10.1152/physrev.2000.80.3.1215 (2000).

Bhasin, S. et al. The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action. J. Gerontol. A. Biol. Sci. Med. Sci. 58, M1103-10 doi:10.1093/gerona/58.12.m1103 (2003).

Bongers, K. S. et al. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy. Am. J. Physiol. - Endocrinol. Metab. 308, E144–E158 doi:10.1152/ajpendo.00472.2014 (2015).

Brouillette, J., Rivard, K., Lizotte, E., & Fiset, C. Sex and strain differences in adult mouse cardiac repolarization: importance of androgens. Cardiovasc. Res. 65, 148- 157 doi:10.1016/j.cardiores.2004.09.012 (2005).

Brown, M. Skeletal muscle and bone: effect of sex steroids and aging. Adv. Physiol. Educ. 32, 120-126 doi:10.1152/advan.90111.2008 (2008).

Cabral, A. M., Vasquez, E. C., Moyses, M. R., & Antonio, A. Sex hormone modulation of ventricular hypertrophy in sinoaortic denervated rats. Hypertension. 11, I93-97 doi: 10.1161/01.hyp.11.2_pt_2.i93 (1988).

Camila, M. et al. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 31, 107795 doi:10.1016/j.celrep.2020.107795 (2020).

Campbell, S. E., Mehan, K. A., Tunstall, R. J., Febbraio, M. A. & Cameron-Smith, D. 17β-Estradiol upregulates the expression of peroxisome proliferator-activated receptor α and lipid oxidative genes in skeletal muscle. J. Mol. Endocrinol. 31, 37- 45 doi:10.1677/jme.0.0310037 (2003).

Cao, Y. et al. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proc. Natl. Acad. Sci. U. S. A. 116, 13394-13403 doi:10.1073/pnas.1821401116 (2019).

Cervelli, M. et al. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Med. Sci. 6, 1-15 (2018) doi:10.3390/medsci6010014.

Chen, X. et al. The number of X chromosomes causes sex differences in adiposity in mice. PLoS Genet. 8, e1002709 doi:10.1371/journal.pgen.1002709 (2012).

Chidi-Ogbulu, N. & Baar, K. Effect of estrogen on musculoskeletal performance and injury risk. Front. Physiol. 9, 1-11 doi:10.3389/fphys.2018.01834 (2019)

Chong, Y. H., Pankhurst, M. W., & Mclennan, I. S. The testicular hormones AMH, InhB, INSL3, and testosterone can be independently deficient in older men. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 548-553 doi:10.1093/gerona/glw143 (2017).

Colliander, E. B., Dudley, G. A., & Tesch, P. A. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions. Eur. J. Appl. Physiol Occup. Physiol. 58, 81-86 doi:10.1007/BF00636607 (1988).

Corciulo, C. et al. Pulsed administration for physiological estrogen replacement in mice. F1000Res. 10, 1-19 doi:10.12688/f1000research.54501.1 (2021).

Csapo, R., Gumpenberger, M., & Wessner, B. Skeletal muscle extracellular matrix - what do we know about its composition, regulation, and physiological roles? A narrative review. Front. Physiol. 11, 1-15 doi:10.3389/fphys.2020.00253 (2020).

Davis, E. J., Spydevold & Bremer, J. Pyruvate Carboxylase and Propionyl‐CoA Carboxylase as Anaplerotic Enzymes in Skeletal Muscle Mitochondria. Eur. J. Biochem. 110, 255-262 doi:10.1111/j.1432-1033.1980.tb04863.x (1980).

DeNardi, C. et al. Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. J. Cell Biol. 113, 823-835 doi:10.1083/jcb.123.4.823 (1993).

Devries, M. C. Sex-based differences in endurance exercise muscle metabolism: Impact on exercise and nutritional strategies to optimize health and performance in women. Exp. Physiol. 101, 243-249 doi:10.1113/EP085369 (2016).

Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15-21 doi:10.1093/bioinformatics/bts635 (2013).

Drynan, L., Quant, P. A. & Zammit, V. A. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over β-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states. Biochem. J. 317, 791-795 doi:10.1042/bj3170791 (1996).

Dubois, V., Laurent, M., Boonen, S., Vanderschueren, D., & Claessens, F. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell. Mol. Life. Sci. 69, 1651-1667 doi:10.1007/s00018-011-0883- 3 (2012).

Dueweke, J. J., Awan, T. M., & Mendias, C. L. Regeneration of Skeletal Muscle After Eccentric Injury. J. Sport Rehabil. 26, 171-179 doi: 10.1123/jsr.2016-0107 (2016).

Eason, J.M., Schwartz, G. A., Pavlath, G. K., & English, A. W. Sexually dimorphic expression of myosin heavy chains in the adult mouse masseter. J. Appl. Physiol. 89, 251-258 doi:10.1152/jappl.2000.89.1.251 (2000).

Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305-1314 doi:10.1038/ncb1975 (2009).

Enns, D. L. & Tiidus, P. M. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 40, 41-58 doi:10.2165/11319760-000000000-00000 (2010).

Erben, R. G. et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol.

Endocrinol. 16, 1524-1537 doi:10.1210/mend.16.7.0866 (2002). Fitts, J. M., Klein, R. M., & Powers, C. A. Comparison of tamoxifen and testosterone propionate in male rats: differential prevention of orchidectomy effects on sex organs, bone mass, growth, and the growth hormone-IGF-I axis. J. Androl. 25, 523- 534 doi:10.1002/j.1939-4640.2004.tb02823.x (2004).

Foryst-Ludwig, A. et al. Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am J Physiol. Heart. Circ. Physiol. 301, 115-122 doi:10.1152/ajpheart.01222.2010 (2011).

Frontera, W. R., & Ochala, J. Skeletal muscle, a brief review of structure and function. Calcif. Tissue Int. 96, 183-195 doi:10.1007/s00223-014-9915-y (2015).

Gallot, Y. S., Hindi, S. M., Mann, A. K. & Kumar, A. Isolation, culture, and staining of single myofibers. Bio-protocol. 6, e1942 doi:10.21769/BioProtoc.1942 (2016).

Gao, H., Falt, S., Sandelin, A., Gustafsson, J-A., & Dahlman-Wright, K. Genome-wide identification of estrogen receptor -binding sites in mouse liver. Mol. Endocrinol. 22, 10-22 doi:10.1210/me.2007-0121 (2008).

Garcia-Cazarin, M. L., Snider, N. N., & Andrande, F. H. Mitochondrial isolation from skeletal muscle. J. Vis. Exp. 49, e2452 doi:10.3791/2452 (2011).

Ghobadi, N., Sahraei, H., Meftahi., G. H., Bananej, M., & Salehi, S. Effect of estradiol replacement in ovariectomized NMRI mice in response to acute and chronic stress. J. App. Pharm. Sci. 6, 176-184 doi:10.7324/JAPS.2016.601128 (2016).

Gibala, M. J., Young, M. E. & Taegtmeyer, H. Anaplerosis of the citric acid cycle: Role in energy metabolism of heart and skeletal muscle. in Acta Physiol. Scand. 168, 657-665 doi:10.1046/j.1365-201X.2000.00717.x (2000).

Glenmark, B. et al. Difference in skeletal muscle function in males vs. females: Role of estrogen receptor-β. Am. J. Physiol. - Endocrinol. Metab. 287, 1125–1131 doi:10.1152/ajpendo.00098.2004 (2004).

Goodman, C. A., Kotecki, J. A., Jacobs, B. L. & Hornberger, T. A. Muscle fiber type- dependent differences in the regulation of protein synthesis. PLoS One. 7, e37890 doi:10.1371/journal.pone.0037890 (2012).

Gorza, L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J. Histochem. Cytochem. 38, 257-265 doi:10.1177/38.2.2137154 (1990).

Green, H. J., Fraser, I. G. & Ranney, D. A. Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. J. Neurol. Sci. 65, 323- 331 doi:10.1016/0022-510X(84)90095-9 (1984).

Haizlip, K. M., Harrison, B. C. & Leinwand, L. A. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology. 30, 30-39 doi:10.1152/physiol.00024.2014 (2015).

Hamalainen, N. & Pette, D. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J. Histochem. Cytochem. 41, 733- 743 doi:10.1177/41.5.8468455 (1993).

Haren, M. T. et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int. J. Androl. 34, 55-68 doi:10.1111/j.1365-2605.2010.01061.x (2011).

Hargreaves, M. & Spriet, L. L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2, 817-828 doi:10.1038/s42255-020-0251-4 (2020).

Hassan, MA. M., Lavery, S. A., & Trew, G. H. Congenital uterine anomalies and their impact on fertility. Womens Health (Lond). 6, 443-461 doi:10.2217/whe.10.19 (2010).

Heinemeier, K. M. et al. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J. Physiol. 582, 1303- 1316 doi:10.1113/jphysiol.2007.127639 (2007).

Herbison, G. J., Jaweed, M. M. & Ditunno, J. F. Muscle fiber types. Arch. Phys. Med. Rehabil. 63, 227-230 (1982).

Horton, R. & Tait, J. F. In vivo conversion of dehydroisoandrosterone to plasma androstenedione and testosterone in man. J. Clin. Endocrinol. Metab. 27, 79-88 doi:10.1210/jcem-27-1-7 (1967).

Houten, S. M. & Wanders, R. J. A. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33, 469-477 doi:10.1007/s10545-010-9061-2 (2010).

Hulmi, J. J. et al. Androgen receptors and testosterone in men--effects of protein ingestion, resistance exercise and fiber type. J. Steroid Biochem. Mol. Biol. 110, 130-137 doi:10.1016/j.jsbmb.2008.03.030 (2008).

Hunter, S. K. The relevance of sex differences in performance fatigability. Med. Sci. Sports Exerc. 48, 2247-2256 doi:10.1249/MSS.0000000000000928 (2016).

Hüttner, S. S. et al. Isolation and culture of individual myofibers and their adjacent muscle stem cells from aged and adult skeletal muscle. in Methods Mol. Biol. 2045, 25-36 doi:10.1007/7651_2019_209 (2019).

Idris, A. I. Ovariectomy/orchidectomy in rodents. Methods Mol. Biol. 816, 545-551 doi:10.1007/978-1-61779-415-5_34 (2012).

Igarashi, K. & Kashiwagi, K. Modulation of cellular function by polyamines. IUBMB Life. 67, 160-169 doi: 10.1002/iub.1363 (2015).

Imbert-Fernandez, Y. et al. Estradiol stimulates glucose metabolism via 6- phosphofructo-2-kinase (PFKFB3). J. Biol. Chem. 289, 9440-9448 doi:10.1074/jbc.M113.529990 (2014).

Jacobs, I., Tesch, P. A., Bar-Or, O., Karlsson, J. & Dotan, R. Lactate in human skeletal muscle after 10 and 30 s of supramaximal exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55, 365-367 doi:10.1152/jappl.1983.55.2.365 (1983).

Julien, I. B., Sephton, C. F., & Dutchak, P. A. Metabolic networks influencing skeletal muscle fiber composition. Front. Cell Dev. Biol. 6, 1-6 doi:10.3389/fcell.2018.00125 (2018)

Kadkhodayan, A. et al. Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. J. Nucl. Cardiol. 24, 1226- 1235 doi:10.1007/s12350-016-0467-6 (2017).

Kanou, M. et al. Polyamine pathway is associated with muscle anabolic effects by androgen receptor ligand. JCSM Rapid Communications. 4, 57-74 doi:10.1002/rco2.28 (2021).

Kim, J. H. et al. Sex hormones establish a reserve pool of adult muscle stem cells. Nat. Cell Biol. 18, 930-940 doi:10.1038/ncb3401 (2016).

Kitajima, S. et al. Undifferentiated State Induced by Rb-p53 Double Inactivation in Mouse Thyroid Neuroendocrine Cells and Embryonic Fibroblasts. Stem Cells. 33, 1657-1669 doi:10.1002/stem.1971 (2015).

Kitajima, Y., Ogawa, S. & Ono, Y. Visualizing the functional heterogeneity of muscle stem cells. in Methods Mol Biol. 1516, 183-193 doi:10.1007/7651_2016_349 (2016).

Kohn, F. M. Testosterone and body functions. Aging Male. 9, 183-188 doi:10.1080/13685530601060396 (2006).

Kumar, A., Accorsi, A., Rhee, Y., & Girgenrath, M. Do’s and don’ts in the preparation of muscle cryosections for histological analysis. J. Vis. Exp. 99, e52793 doi:10.3791/52793 (2015).

Laredo, S. A. et al. Nongenomic effects of estradiol on aggression under short day photoperiods. Horm. Behav. 64, 557-565 doi:10.1016/j.yhbeh.2013.06.002 (2013).

Lee, N. K. & Maclean, H. Polyamines, androgens, and skeletal muscle hypertrophy. J. Cell. Physiol. 226, 1453-1460 doi:10.1002/jcp.22569 (2011).

Lee, N. K. L., Skinner, J. P. J., Zajac, J. D., & MacLean, H. E. Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am. J. Physiol. Endocrinol. Metab. 301, E172-179 doi:10.1152/ajpendo.00094.2011 (2011).

Lin, I. H. et al. Skeletal muscle in aged mice reveals extensive transformation of muscle gene expression. BMC Genet. 19, 1-13 doi:10.1186/s12863-018-0660-5 (2018).

Liu, J., liang, XJ., & Gan, ZJ. Transcriptional regulatory circuits controlling muscle fiber type switching. Sci. China Life Sci. 58, 321-327 doi:10.1007/s11427-015- 4833-4 (2015).

Lundsgaard, A-M. & Kiens, B. Gender differences in skeletal muscle substrate metabolism - molecular mechanisms and insulin sensitivity. Front. Endocrinol (Lausanne). 13, 1-16 doi:10.3389/fendo.2014.00195 (2014).

MacLean, H. E. et al. Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J. 22, 2676-2689 doi:10.1096/fj.08-105726 (2008).

Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science. 359, eaan2788 doi:10.1126/science.aan2788 (2018).

Maher, A. C., Akhtar, M., Vockley, J. & Tarnopolsky, M. A. Women have higher protein content of β-oxidation enzymes in skeletal muscle than men. PLoS One. 5, e12025 doi:10.1371/journal.pone.0012025 (2010).

Mahlapuu, M. et al. Expression profiling of the -subunit isoforms of AMP-activated protein kinase suggests a major role for 3 in white skeletal muscle. Am J Physiol Endocrinol Metab. 286, E194-200 doi: 10.1152/ajpendo.00147.2003 (2004).

Marin, P., Krotkiewski, M., & Bjorntorp, P. Androgen treatment of middle-aged, obese men: effects on metabolism, muscle and adipose tissues. Eur. J. Med. 1, 329-336 (1992).

Massie, C. E. et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719-2733 doi:10.1038/emboj.2011.158 (2011).

Melouane, A., Ghanemi, A., Aubé, S., Yoshioka, M. & St-Amand, J. Differential gene expression analysis in ageing muscle and drug discovery perspectives. Ageing Res. Rev. 41, 53-63 doi:10.1016/j.arr.2017.10.006 (2018).

Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767-16775 doi:10.1074/jbc.M901790200 (2009).

Morton, R. W. et al. Muscle androgen receptor content but not systemic hormones is associated with resistance training-induced skeletal muscle hypertrophy in healthy, young men. Front. Physiol. 9, 1-11 doi:10.3389/fphys.2018.01373 (2018).

Mulukutla, B. C., Yongky, A., Daoutidis, P. & Hu, W. S. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 9, e98756 doi:10.1371/journal.pone.0098756 (2014).

Murach, K. et al. Single muscle fiber gene expression with run taper. PLoS One 9, e108547 doi:10.1371/journal.pone.0108547 (2014).

Nelson, J. F., Felicio, L. S., Randall, P. K., Sims, C. & Finch, C. E. A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biol. Reprod. 27, 327-339 doi:10.1095/biolreprod27.2.327 (1982).

Nishimura, K. et al. Essential role of S-adenosylmethionine decarboxylase in mouse embryonic development. Genes Cells. 7, 41-47 doi:10.1046/j.1356- 9597.2001.00494.x (2002).

O’Connell, M. D. L., & Wu, F. C. W. Androgen effects on skeletal muscle: implications for the development and management of frailty. Asian J. Androl. 16, 203-212 doi:10.4103/1008-682X.122581 (2014).

Obach, M. et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia- inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. 279, 53562-53570 doi:10.1074/jbc.M406096200 (2004).

Ophoff, J. et al. Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology. 150, 3558-3566 doi:10.1210/en.2008-1509 (2009).

Padilla-Banks, E., Jefferson, W. N., & Newbold, R. R. The immature mouse is a suitable model for detection of estrogenicity in the uterotropic bioassay. Environ. Health Perspect. 109, 821-826 doi:10.1289/ehp.01109821 (2001).

Pasut, A., Jones, A. E. & Rudnicki, M. A. Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J Vis Exp. 73, e50074 doi:10.3791/50074 (2013).

Pendeville, H. et al. The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development. Mol. Cell. Biol. 21, 6549-6558 doi:10.1128/mcb.21.19.6549-6558.2001 (2001).

Pette, D. & Staront, R. S. Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170, 143-223 doi:10.1016/s0074-7696(08)61622-8 (1997).

Pette, D. Metabolic heterogeneity of muscle fibres. J. Exp. Biol. 115, 179-189 doi:10.1242/jeb.115.1.179 (1985).

Pettersen, I. K. N. et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion. 49, 97-110 doi:10.1016/j.mito.2019.07.009 (2019).

Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 1-15 doi:10.1038/s41467-019-13869-w (2020).

Quarmby, V. E., Fox-Davies, C., & Korach, K. S. Estrogen action in the mouse uterus: the influence of the neuroendocrine-adrenal axis. Endocrinology. 114, 108-115 doi:10.1210/endo-114-1-108 (1984).

Quiroga, H. P. O., Goto, K., & Zammit, P. S. Isolation, cryosection and immunostaining of skeletal muscle. Methods Mol. Biol. 1460, 85-100 doi:10.1007/978-1-4939- 3810-0_8 (2016).

Ragnum, H. B. et al. Hypoxia-independent downregulation of hypoxia-inducible factor 1 targets by androgen deprivation therapy in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 87, 753-760 doi:10.1016/j.ijrobp.2013.07.023 (2013).

Rana, K. et al. Muscle-specific androgen receptor deletion shows limited actions in myoblasts but not in myofibers in different muscles in vivo. J. Mol. Endocrinol. 57, 125-138 doi:10.1530/JME-15-0320 (2016).

Rana, K., Lee, N. K. L., Zajac, J. D. & Maclean, H. E. Expression of androgen receptor target genes in skeletal muscle. Asian J. Androl. 16, 675-683 doi:10.4103/1008- 682X.122861 (2014).

Raudrant, D. & Rabe, T. Progestogens with antiandrogenic properties. Drugs. 63, 463- 492 doi:10.2165/00003495-200363050-00003 (2003).

Ray, P. F., Conaghan, J., Winston, R. M. L. & Handyside, A. H. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J. Reprod. Fertil. 104, 165-171 doi:10.1530/jrf.0.1040165 (1995).

Robbins, J. B., Broadwell, C., Chow, L. C., Parry, J. P., & Sadowski, E. A. Müllerian duct anomalies: embryological development, classification, and MRI assessment. J. Magn. Reson. Imaging. 41, 1-12 doi: 10.1002/jmri.24771 (2015)

Ronkainen, P. H. A. et al. Global gene expression profiles in skeletal muscle of monozygotic female twins discordant for hormone replacement therapy. Aging cell. 9, 1098-1110 doi:10.1111/j.1474-9726.2010.00636.x (2010).

Rosa-Caldwell, M. E. & Greene, N. P. Muscle metabolism and atrophy: Let’s talk about sex. Biol. Sex Differ. 10, 1–14 doi:10.1186/s13293-019-0257-3 (2019).

Rovira, J., Irimia, J. M., Guerrero, M., Cadefau, J. A. & Cussó, R. Upregulation of heart PFK-2/FBPase-2 isozyme in skeletal muscle after persistent contraction. Pflugers Arch. Eur. J. Physiol. 463, 603-613 doi:10.1007/s00424-011-1068-5 (2012).

Safari, T., Nematbakhsh, M., Evans, R. G., & Denton, K. M. High-dose estradiol replacement therapy enhances the renal vascular response to angiotensin II via an AT2-receptor dependent mechanism. Adv. Pharmacol. Sci. 2015, 1-7 doi:10.1155/2015/682745 (2015).

Sakakibara, I. et al. Myofiber androgen receptor increases muscle strength mediated by a skeletal muscle splicing variant of Mylk4. iScience. 24, 102303 doi:10.1016/j.isci.2021.102303 (2021).

Salehzadeh, F., Rune, A., Osler, M., & Al-Khalili, L. Testosterone or 17(beta)-estradiol exposure reveals sex-specific effects on glucose and lipid metabolism in human myotubes. J. Endocrinol. 210, 219-229 doi:10.1530/JOE-10-0497 (2011).

Salimena, M. C., Lagrota-Candido, J., & Quirico-Santos, T. Gender dimorphism influences extracellular matrix expression and regeneration of muscular tissue in mdx dystrophic mice. Histochem Cell Biol. 122, 435-444 doi:10.1007/s00418-004- 0707-8 (2004).

Sawano, S. et al. A one-step immunostaining method to visualize rodent muscle fiber type within a single specimen. PLoS One. 11, e0166080 doi:10.1371/journal.pone.0166080 (2016).

Schiaffino, S. & Reggiani, C. Fiber types in Mammalian skeletal muscles. Physiol. Rev. 91, 1447-1531 doi:10.1152/physrev.00031.2010 (2011).

Schiaffino, S. et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J. Muscle Res. Cell Motil. 10, 197-205 doi:10.1007/BF01739810 (1989).

Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676-682 doi:10.1038/nmeth.2019 (2012).

Scott, W., Stevens, J., & Binder-Macleod, S. A. Human skeletal muscle fiber type classifications. Phys. Ther. 81, 1810-1816 doi:10.1093/ptj/81.11.1810 (2001).

Shima, H., Tsuji, M., Young P., & Cunha, G. R. Postnatal growth of mouse seminal vesicle is dependent on 5 alpha-dihydrotestosterone. Endocrinology. 127, 3222-3233 doi:10.1210/endo-127-6-3222 (1990).

Sinha-Hikim, I. et al. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am. J. Physiol. Endrocinol. Metab. 283, e154-164 doi:10.1152/ajpendo.00502.2001 (2002).

Sinha-Hikim, I., Cornford, M., Gaytan, H., Lee, M. L. & Bhasin, S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J. Clin. Endocrinol. Metab. 91, 3024–3033 doi:10.1210/jc.2006-0357 (2006).

Sipila, S. et al. Sex hormones and skeletal muscle weakness. Biogerontology. 14, 231- 245 doi: 10.1007/s10522-013-9425-8 (2013).

Synnergren, J. et al. Transcriptional sex and regional differences in paired human atrial and ventricular cardiac biopsies collected in vivo. Physiol. Genomics. 52, 110-120 doi:10.1152/physiolgenomics.00036 (2020).

Tian, J. C. et al. Effect of androgen deprivation on the expression of aquaporins in rat prostate and seminal vesicle. Andrologia. 48, 268-276 doi:10.1111/and.12442 (2015).

Trexler, C. L., Odell, A. T., Jeong, M. Y., Dowell, R. D., & Leinwand, L. A. Transcriptome and functional profile of cardiac myocytes is influenced by biological sex. Circ. Cardiovasc. Genet. 10, e001770 doi:10.1161/circgenetics.117.001770 (2017).

Uchitomi, R., et al. Metabolomic analysis of skeletal muscle in aged mice. Sci. Rep. 9, 10425 doi:10.1038/s41598-019-46929-8 (2019).

Urban, R. J. et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am. J. Physiol. 269, E820-826 doi:10.1152/ajpendo.1995.269.5.E820 (1995).

Valkenburg, K. C., Amend, S. R., & Pienta, K. J. Murine prostate micro-dissection and surgical castration. J. Vis. Exp. 111, e53984 doi:10.3791/53984 (2016).

Van Schaftingen, E., Hue, L. & Hers, H. G. Fructose 2,6-bisphosphate, the probable structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem. J. 192, 897-901 doi:10.1042/bj1920897 (1980).

Ventura-Clapier, R. et al. Sex in basic research: concepts in the cardiovascular field. Cardiovasc. Res. 113, 711-724 doi:10.1093/cvr/cvx066 (2017).

Wakley, A. A., Wiley, J. L. & Craft, R. M. Gonadal hormones do not alter the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol in adult rats. Pharmacol. Biochem. Behav. 133, 111-121 doi:10.1016/j.pbb.2015.03.021 (2016).

Wang, M., Yu, H., Kim, Y. S., Bidwell, C. A. & Kuang, S. Myostatin facilitates slow and inhibits fast myosin heavy chain expression during myogenic differentiation. Biochem. Biophys. Res. Commun. 426, 83-88 doi:10.1016/j.bbrc.2012.08.040 (2012).

Weiss, A. et al. Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc. Natl. Acad. Sci. U. S. A. 96, 2958-2963 doi:10.1073/pnas.96.6.2958 (1999).

Welle, S., Tawil, R. & Thornton, C. A. Sex-related differences in gene expression in human skeletal muscle. PLoS One. 3, e1385 doi:10.1371/journal.pone.0001385 (2008).

Westerblad, H., Bruton, J. D., & Katz, A. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptibility. Exp. Cell Res. 316, 3093-3099 doi:10.1016/j.yexcr.2010.05.019 (2010).

Wierman, M. E. Sex steroid effect at target tissues: mechanisms of action. Adv. Physiol. Educ. 31, 26-33 doi:10.1152/advan.00086.2006 (2007).

Wu, C., Khan, S. A., Peng, L. J. & Lange, A. J. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: Beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Adv. Enzyme Regul. 46, 72-88 doi:10.1016/j.advenzreg.2006.01.010 (2006).

Wu, P. et al. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem. J. 329, 197-201 doi:10.1042/bj3290197 (1998).

Wüst, R. C. I., Morse, C. I., De Haan, A., Jones, D. A. & Degens, H. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp. Physiol. 93, 843-850 doi:10.1113/expphysiol.2007.041764 (2008).

Yalcin, A., Telang, S., Clem, B. & Chesney, J. Regulation of glucose metabolism by 6- phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86, 174-179 doi:10.1016/j.yexmp.2009.01.003 (2009).

Yang, L., Smyth Gordon K & Wei, S. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30, 923- 930 doi: 10.1093/bioinformatics/btt656 (2014).

Yoshioka, M., Boivin, A., Bolduc, C. & St-Amand, J. Gender difference of androgen actions on skeletal muscle transcriptone. J. Mol. Endocrinol. 39, 119–133 doi:10.1677/JME-07-0027 (2007).

Yoshioka, M., Boivin, A., Ye, P., Labrie, F. & St-Amand, J. Effects of dihydrotestosterone on skeletal muscle transcriptome in mice measured by serial analysis of gene expression. J. Mol. Endocrinol. 36, 247-259 doi:10.1677/jme.1.01964 (2006).

Zierath, J. R. & Hawley, J. A. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2, e348 doi: 10.1371/journal.pbio.0020348 (2004).

Zitzmann, M. & Nieschlag, E. Testosterone levels in healthy men and the relation to behavioural and physical characteristics: facts and constructs. Eur. J. Endocrinol. 144, 183-197 doi:10.1530/eje.0.1440183 (2001).

参考文献をもっと見る