リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Physical Mechanism for a Temporal Decrease of the Gutenberg-Richter b-Value Prior to a Large Earthquake」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Physical Mechanism for a Temporal Decrease of the Gutenberg-Richter b-Value Prior to a Large Earthquake

Ito, Ryo Kaneko, Yoshihiro 京都大学 DOI:10.1029/2023JB027413

2023.12

概要

Observations of seismicity prior to large earthquakes show that the slope of a Gutenberg-Richter magnitude-frequency relation, referred to as a b-value, sometimes decreases with time to the mainshock. Yet, underlying physical processes associated with the temporal change of a b-value remain unclear. Here we utilize continuum models of fully dynamic earthquake cycles with fault frictional heterogeneities and aim to simulate the temporal variation of a b-value. We first identify a parameter regime in which the model gives rise to an active and accelerating foreshock behavior prior to the mainshock. We then focus on the spatio-temporal pattern of the simulated foreshocks and analyze their statistics. We find that the b-value of simulated foreshocks decreases with time prior to the mainshock. A marked decrease in the resulting b-value occurs over the duration of less than a few percent of the mainshock recurrence interval, broadly consistent with foreshock behaviors and b-value changes as observed in nature and laboratory, rock-friction experiments. In this model, increased shear stresses on creeping (or velocity-strengthening) fault patches resulting from numerous foreshocks make these creeping patches more susceptible to future coseismic slip, increasing the likelihood of large ruptures and leading to a smaller b-value with time. This mechanism differs from a widely invoked idea that the decrease of a b-value is caused by a rapid increase in shear stress that promotes micro-crack growth, and offers a new interpretation of b-value changes prior to a large earthquake.

この論文で使われている画像

参考文献

Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a − bM and its confidence limits. Bulletin of the Earthquake Research

Institute, University of Tokyo, 43, 237–239.

Ando, R., & Imanishi, K. (2011). Possibility of Mw 9.0 mainshock triggered by diffusional propagation of after-slip from Mw 7.3 foreshock.

Earth Planets and Space, 63(7), 767–771. https://doi.org/10.5047/eps.2011.05.016

Aochi, H., & Ide, S. (2009). Complexity in earthquake sequences controlled by multiscale heterogeneity in fault fracture energy. Journal of

Geophysical Research, 114(B3), B03305. https://doi.org/10.1029/2008jb006034

Beall, A., van den Ende, M., Ampuero, J.-P., Capitanio, F. A., & Fagereng, A. (2022). Linking earthquake magnitude-frequency statistics and

stress in visco-frictional fault zone models. Geophysical Research Letters, 49(20), e2022GL099247. https://doi.org/10.1029/2022gl099247

Bolton, D. C., Shreedharan, S., Rivière, J., & Marone, C. (2021). Frequency-magnitude statistics of laboratory foreshocks vary with shear velocity,

fault slip rate, and shear stress. Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022175. https://doi.org/10.1029/2021JB022175

Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M.-P. (2011). Extended nucleation of the 1999 Mw 7.6 Izmit

earthquake. Science, 331(6019), 877–880. https://doi.org/10.1126/science.1197341

Brodsky, E. E., & Lay, T. (2014). Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science, 344(6185), 700–702. https://doi.

org/10.1126/science.1255202

Cattania, C., & Segall, P. (2021). Precursory slow slip and foreshocks on rough faults. Journal of Geophysical Research: Solid Earth, 126(4),

e2020JB020430. https://doi.org/10.1029/2020jb020430

Dascher-Cousineau, K., Lay, T., & Brodsky, E. E. (2020). Two foreshock sequences Post Gulia and Wiemer (2019). Seismological Research

Letters, 91(5), 2843–2850. https://doi.org/10.1785/0220200082

Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional

spontaneous rupture. Journal of Geophysical Research, 110(B12), B12307. https://doi.org/10.1029/2005JB003813

Dieterich, J. H. (1978). Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics, 116(4–5), 790–806. https://doi.

org/10.1007/BF00876539

Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5),

2161–2168. https://doi.org/10.1029/JB084iB05p02161

Dieterich, J. H. (1992). Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics, 211(1–4), 115–134. https://doi.

org/10.1016/0040-1951(92)90055-B

Di Toro, G., Han, R., Hirose, T., Paola, N. D., Nielsen, S., Mizoguchi, K., et al. (2011). Fault lubrication during earthquakes. Nature, 471(7339),

494–498. https://doi.org/10.1038/nature09838

Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California foreshock sequences: Implications for the earthquake

initiation process. Journal of Geophysical Research, 101(B10), 22371–22392. https://doi.org/10.1029/96jb02269

Dublanchet, P. (2018). The dynamics of earthquake precursors controlled by effective friction. Geophysical Journal International, 212(2),

853–871. https://doi.org/10.1093/gji/ggx438

Dublanchet, P. (2020). Stress-dependent b value variations in a heterogeneous rate-and-state fault model. Geophysical Research Letters, 47(13),

e2020GL087434. https://doi.org/10.1029/2020GL087434

Dublanchet, P. (2022). Shear stress and b-value fluctuations in a hierarchical rate-and-state asperity model. Pure and Applied Geophysics, 179(6–

7), 2423–2435. https://doi.org/10.1007/s00024-022-03039-3

Dublanchet, P., Bernard, P., & Favreau, P. (2013). Interactions and triggering in a 3-D rate-and-state asperity model. Journal of Geophysical

Research: Solid Earth, 118(5), 2225–2245. https://doi.org/10.1002/jgrb.50187

Ellsworth, W. L., & Bulut, F. (2018). Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 11(7),

531–535. https://doi.org/10.1038/s41561-018-0145-1

Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G., & Sammis, C. G. (2013). Acoustic emissions document stress changes over many

seismic cycles in stick-slip experiments. Geophysical Research Letters, 40(10), 2049–2054. https://doi.org/10.1002/grl.50507

Gulia, L., Rinaldi, A. P., Tormann, T., Vannucci, G., Enescu, B., & Wiemer, S. (2018). The effect of a mainshock on the size distribution of the

aftershocks. Geophysical Research Letters, 45(24), 13277–13287. https://doi.org/10.1029/2018GL080619

Gulia, L., Tormann, T., Wiemer, S., Herrmann, M., & Seif, S. (2016). Short-term probabilistic earthquake risk assessment considering

time-dependent b values. Geophysical Research Letters, 43(3), 1100–1108. https://doi.org/10.1002/2015GL066686

Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193–199. https://doi.

org/10.1038/s41586-019-1606-4

Gutenberg, B., & Richter, C. (1949). Seismicity of the earth and associated phenomena. Princeton University Press.

Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169–198. https://doi.org/10.1002/2016rg000539

Ikari, M. J., Marone, C., & Saffer, D. M. (2011). On the relation between fault strength and frictional stability. Geology, 39(1), 83–86. https://

doi.org/10.1130/G31416.1

Ikari, M. J., Niemeijer, A. R., & Marone, C. (2011). The role of fault zone fabric and lithification state on frictional strength, constitutive behavior,

and deformation microstructure. Journal of Geophysical Research, 116(B8), B08404. https://doi.org/10.1029/2011jb008264

Ito, R., & Kaneko, Y. (2023). Numerical data for research paper titled “Physical mechanism for a temporal decrease of the Gutenberg-Richter

b-value prior to a large earthquake” (version 2) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.8115932

Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., et al. (2013). Episodic slow slip events in the Japan subduction zone before the

2011 Tohoku-Oki earthquake. Tectonophysics, 600, 14–26. https://doi.org/10.1016/j.tecto.2012.08.022

Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987. https://doi.org/10.1029/

jb082i020p02981

Kaneko, Y., Avouac, J.-P., & Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling.

Nature Geoscience, 3(5), 363–369. https://doi.org/10.1038/NGEO843

Kaneko, Y., Carpenter, B. M., & Nielsen, S. B. (2017). Nucleation process of magnitude 2 repeating earthquakes on the San Andreas

Fault predicted by rate-and-state fault models with SAFOD drill core data. Geophysical Research Letters, 44(1), 162–173. https://doi.

org/10.1002/2016GL071569

19 of 21

21699356, 2023, 12, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JB027413 by Cochrane Japan, Wiley Online Library on [21/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Solid Earth

10.1029/2023JB027413

Kaneko, Y., & Lapusta, N. (2008). Variability of earthquake nucleation in continuum models of rate-and-state faults and implications for aftershock rates. Journal of Geophysical Research, 113(B12), B12312. https://doi.org/10.1029/2007JB005154

Kaneko, Y., Lapusta, N., & Ampuero, J.-P. (2008). Spectral element modeling of spontaneous earthquake rupture on rate and state faults: Effect of

velocity-strengthening friction at shallow depths. Journal of Geophysical Research, 113(B9), B09317. https://doi.org/10.1029/2007JB005553

Kaneko, Y., Nielsen, S. B., & Carpenter, B. M. (2016). The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state

fault. Journal of Geophysical Research: Solid Earth, 121(8), 6071–6091. https://doi.org/10.1002/2016JB013143

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 Mw 9.0

Tohoku-Oki earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141

Lapusta, N., & Liu, Y. (2009). Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. Journal

of Geophysical Research, 114(B9), B09303. https://doi.org/10.1029/2008JB005934

Lapusta, N., Rice, J. R., Ben-Zion, Y., & Zheng, G. (2000). Elastodynamic analysis for slow tectonic loading with spontaneous rupture

episodes on faults with rate- and state-dependent friction. Journal of Geophysical Research, 105(B10), 23765–23789. https://doi.

org/10.1029/2000JB900250

Lui, S. K., & Lapusta, N. (2016). Repeating microearthquake sequences interact predominantly through postseismic slip. Nature Communications, 7(1), 1–7. https://doi.org/10.1038/ncomms13020

Luo, Y., & Ampuero, J.-P. (2018). Stability of faults with heterogeneous friction properties and effective normal stress. Tectonophysics, 733,

257–272. https://doi.org/10.1016/j.tecto.2017.11.006

Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences,

26(1), 643–696. https://doi.org/10.1146/annurev.earth.26.1.643

Marone, C., & Saffer, D. M. (2015). The mechanics of frictional healing and slip instability during the seismic cycle. Treatise on Geophysics,

111–138. https://doi.org/10.1016/B978-0-444-53802-4.00092-0

Marty, S., Schubnel, A., Bhat, H. S., Aubry, J., Fukuyama, E., Latour, S., et al. (2023). Nucleation of laboratory earthquakes: Quantitative analysis

and scalings. Journal of Geophysical Research: Solid Earth, 128(3), e2022JB026294. https://doi.org/10.1029/2022jb026294

McLaskey, G. C. (2019). Earthquake initiation from laboratory observations and implications for foreshocks. Journal of Geophysical Research:

Solid Earth, 124(12), 12882–12904. https://doi.org/10.1029/2019JB018363

McLaskey, G. C., & Lockner, D. A. (2014). Preslip and cascade processes initiating laboratory stick slip. Journal of Geophysical Research: Solid

Earth, 119(8), 6323–6336. https://doi.org/10.1002/2014JB011220

Nanjo, K. Z., Hirata, N., Obara, K., & Kasahara, K. (2012). Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes. Geophysical Research Letters, 39(20), L20304. https://doi.org/10.1029/2012GL052997

Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493(7433),

518–521. https://doi.org/10.1038/nature11703

Ozawa, S., & Ando, R. (2021). Mainshock and aftershock sequence simulation in geometrically complex fault zones. Journal of Geophysical

Research: Solid Earth, 126(2), e2020JB020865. https://doi.org/10.1029/2020JB020865

Papadopoulos, G. A., Charalampakis, M., Fokaefs, A., & Minadakis, G. (2010). Strong foreshock signal preceding the L'Aquila (Italy) earthquake

(Mw 6.3) of 6 April 2009. Natural Hazards and Earth System Sciences, 10(1), 19–24. https://doi.org/10.5194/nhess-10-19-2010

Rice, J. R. (1993). Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research, 98(B6), 9885–9907. https://doi.

org/10.1029/93JB00191

Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research, 111(B5), B05311. https://doi.

org/10.1029/2005JB004006

Rubin, A. M., & Ampuero, J.-P. (2005). Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research, 110(B11),

B11312. https://doi.org/10.1029/2005JB003686

Ruina, A. L. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research, 88, 10359–10370. https://doi.org/10.1029/

JB088iB12p10359

Schaal, N., & Lapusta, N. (2019). Microseismicity on patches of higher compression during larger-scale earthquake nucleation in a rate-and-state

fault model. Journal of Geophysical Research: Solid Earth, 124(2), 1962–1990. https://doi.org/10.1029/2018JB016395

Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological

Society of America, 58(1), 399–415. https://doi.org/10.1785/BSSA0580010399

Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. https://doi.

org/10.1002/2014GL062863

Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., et al. (2014). Gradual unlocking of plate boundary controlled initiation of

the 2014 Iquique earthquake. Nature, 512(7514), 299–302. https://doi.org/10.1038/nature13681

Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum-Pacific subduction zones. Reviews of Geophysics, 45(3),

RG3004. https://doi.org/10.1029/2006RG000208

Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72(5),

1677–1687. https://doi.org/10.1785/BSSA0720051677

Shimbaru, T., & Yoshida, A. (2021). The b value in the seismic activity around foci of large crustal earthquakes before and after their occurrence.

Zisin 2nd Collection, 74, 77–86. https://doi.org/10.4294/zisin.2020-5

Simon, V., Kraft, T., Diehl, T., & Tormann, T. (2021). Possible precursory slow-slip to two ML 3 mainevents of the Diemtigen microearthquake

sequence, Switzerland. Geophysical Research Letters, 48(19), e2021GL093783. https://doi.org/10.1029/2021gl093783

Skarbek, R. M., Rempel, A. W., & Schmidt, D. A. (2012). Geologic heterogeneity can produce aseismic slip transients. Geophysical Research

Letters, 39(21), L21306. https://doi.org/10.1029/2012GL053762

Tape, C., Holtkamp, S., Silwal, V., Hawthorne, J., Kaneko, Y., Ampuero, J.-P., et al. (2018). Earthquake nucleation and fault slip complexity in

the lower crust of central Alaska. Nature Geoscience, 1(7), 536–541. https://doi.org/10.1038/s41561-018-0144-2

Uchida, N., Shimamura, K., Matsuzawa, T., & Okada, T. (2015). Postseismic response of repeating earthquakes around the 2011 Tohoku-Oki

earthquake: Moment increases due to the fast loading rate. Journal of Geophysical Research: Solid Earth, 120(1), 259–274. https://doi.

org/10.1002/2013JB010933

Utsu, T. (1965). A method for determining the value of b in a formula log n=a-bM showing the magnitude frequency relation for earthquakes.

Journal of Physics of the Earth, 14(2), 37–40. https://doi.org/10.4294/jpe1952.14.37

Vorobieva, I., Shebalin, P., & Narteau, C. (2016). Break of slope in earthquake size distribution and creep rate along the San Andreas Fault

system. Geophysical Research Letters, 43(13), 6869–6875. https://doi.org/10.1002/2016gl069636

Yabe, S., & Ide, S. (2017). Slip-behavior transitions of a heterogeneous linear fault. Journal of Geophysical Research: Solid Earth, 122(1),

387–410. https://doi.org/10.1002/2016JB013132

ITO AND KANEKO

20 of 21

21699356, 2023, 12, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JB027413 by Cochrane Japan, Wiley Online Library on [21/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Solid Earth

10.1029/2023JB027413

Yabe, S., & Ide, S. (2018). Variations in precursory slip behavior resulting from frictional heterogeneity. Progress in Earth and Planetary Science,

5(1), 1–11. https://doi.org/10.1186/s40645-018-0201-x

Yamashita, F., Fukuyama, E., Xu, S., Kawakata, H., Mizoguchi, K., & Takizawa, S. (2021). Two end-member earthquake preparations illuminated

by foreshock activity on a meter-scale laboratory fault. Nature Communications, 12(1), 1–11. https://doi.org/10.1038/s41467-021-24625-4

Yoon, C. E., Yoshimitsu, N., Ellsworth, W. L., & Beroza, G. C. (2019). Foreshocks and mainshock nucleation of the 1999 Mw 7.1 Hector Mine,

California, earthquake. Journal of Geophysical Research: Solid Earth, 124(2), 1569–1582. https://doi.org/10.1029/2018JB016383

ITO AND KANEKO

21 of 21

21699356, 2023, 12, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JB027413 by Cochrane Japan, Wiley Online Library on [21/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Solid Earth

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る