リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Estimating long-term uplift rate based on stream analysis:A practical guide to extract tectonic signature from river morphology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Estimating long-term uplift rate based on stream analysis:A practical guide to extract tectonic signature from river morphology

Takahashi Naoya 東北大学

2021.03.25

概要

Fault slip rate reflects sizes and recurrence intervals of past earthquakes, meaning quantifying slip rates is vital to understand the spatiotemporal pattern of large earthquakes. Traditional approaches to obtain slip rates require offset markers that record deformation of past earthquakes; however, such marker is very limited. River adjusts its morphology depending on uplift rates and occurs ubiquitously, suggesting river morphology can be an alternative proxy to infer uplift rates. While a growing number of studies examine relationships between river morphology and uplift rates, we do not know how to use the current knowledge to derive more accurate uplift rates from stream analysis. Therefore, this thesis aims to provide a guide to tease out tectonic signals from river morphology through the following two studies.

In the first study, I presented a method to evaluate the effects of substrate strength on channel steepness based on the standard detachment limited model. Although the significance of substrate properties over channel morphology has long been recognized, the erosional resistance of rocks measured by existing methods was qualitative. The current method can quantify and calibrate the effects of different substrates on channel steepness. Using this method, I estimated the long-term uplift rates along the Futagawa fault, a dextral-normal fault in Kumamoto, southwestern Japan. Although further studies are necessary to test the robustness of this approach, the calibration method presented in this study should help evaluating effects of rock strength on normalized channel steepness.

The second study revealed the response timescales of channel width and hillslope angle to accelerated erosion. Channel width and hillslope angle are important factors to modulate erosion rates. Their response timescales were rarely discussed in previous studies due to their difficulty in constraining in an actual landscape. I showed those response time could be constrained using knickpoint travel time and the resulting timescales were 320–540 ky for width and 40–320 ky for hillslope angle when the slope exponent n in the stream power model was 1. This result indicates that a basin-scale steady state is not established soon after a knickpoint travels up to the head of the trunk stream, emphasizing the need to carefully investigate trunk and tributary channels and adjacent hillslopes to reduce errors in uplift rates deduced from stream analysis.

この論文で使われている画像

参考文献

Adams, B.A., Whipple, K.X., Forte, A.M., Heimsath, A.M., Hodges, K. V., 2020. Climate controls on erosion in tectonically active landscapes. Sci Adv 6, eaaz3166.

Ahnert, F., 1970. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am J Sci 268, 243–263.

Allen, G.H., Barnes, J.B., Pavelsky, T.M., Kirby, E., 2013. Lithologic and tectonic controls on bedrock channel form at the northwest Himalayan front. J Geophys Res Earth Surf 118, 1806–1825.

Aoki, K., 2008. Revised age and distribution of ca. 87 ka Aso-4 tephra based on new evidence from the northwest Pacific Ocean. Quat Int 178, 100–118.

Berlin, M.M., Anderson, R.S., 2007. Modeling of knickpoint retreat on the Roan Plateau, western Colorado. J Geophys Res Earth Surf. 112, F03S06.

Bookhagen, B., Strecker, M.R., 2012. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes. Earth Planet Sci Lett 327–328, 97–110.

Braucher, R., Brown, E.T., Bourlès, D.L., Colin, F., 2003. In situ produced 10Be measurements at great depths: Implications for production rates by fast muons. Earth Planet Sci Lett 211, 251–258.

Bursztyn, N., Pederson, J.L., Tressler, C., Mackley, R.D., Mitchell, K.J., 2015. Rock strength along a fluvial transect of the Colorado Plateau - quantifying a fundamental control on geomorphology. Earth Planet Sci Lett 429, 90–100.

Carson, M.A., Petley, D.J., 1970. The Existence of Threshold Hillslopes in the Denudation of the Landscape. Trans Inst Br Geogr 49, 71–95.

Chen, Y.W., Shyu, J.B.H., Chang, C.P., 2015. Neotectonic characteristics along the eastern flank of the Central Range in the active Taiwan orogen inferred from fluvial channel morphology. Tectonics 34, 2249–2270.

Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D., 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 268, 192–199.

Cowie, P.A., Whittaker, A.C., Attal, M., Roberts, G., Tucker, G.E., Ganas, A., 2008. New constraints on sediment-flux-dependent river incision: Implications for extracting tectonic signals from river profiles. Geology 36, 535–538.

Crosby, B.T., Whipple, K.X., 2006. Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology 82, 16–38.

Crosby, B.T., Whipple, K.X., Gasparini, N.M., Wobus, C.W., 2007. Formation of fluvial hanging valleys: Theory and simulation. J Geophys Res 112, F03S10.

DiBiase, R.A., Whipple, K.X., Heimsath, A.M., Ouimet, W.B., 2010. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth Planet Sci Lett 289, 134–144.

DiBiase, R.A., Heimsath, A.M., Whipple, K.X., 2012. Hillslope response to tectonic forcing in threshold landscapes. Earth Surf Process Landforms 37, 855–865.

DiBiase, R.A., Whipple, K.X., Lamb, M.P., Heimsath, A.M., 2014. The role of waterfalls and knickzones in controlling the style and pace of landscape adjustment in the western San Gabriel Mountains, California. Bull Geol Soc Am 127, 539–559.

DiBiase, R.A., Rossi, M.W., Neely, A.B., 2018. Fracture density and grain size controls on the relief structure of bedrock landscapes. Geology 46, 399–402.

Duvall, A., Kirby, E., Burbank, D., 2004. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. J Geophys Res 109, F03002.

Flint, J.J., 1974. Stream gradient as a function of order, magnitude, and discharge. Water Resour Res 10, 969–973.

Fukushima, Y., Takada, Y., Hashimoto, M., 2013. Complex Ruptures of the 11 April 2011 Mw 6.6 Iwaki Earthquake Triggered by the 11 March 2011 Mw 9.0 Tohoku Earthquake, Japan. Bull Seismol Soc Am 103, 1572–1583.

Gallen, S.F., Wegmann, K.W., 2017. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth Surf Dyn 5, 161–186.

Ganev, P.N., Dolan, J.F., Mcgill, S.F., Frankel, K.L., 2012. Constancy of geologic slip rate along the central Garlock fault: Implications for strain accumulation and release in southern California. Geophys J Int 190, 745–760.

Geological Survey of Japan, 2020. Seamless Digital Geological Map of Japan. https://gbank.gsj.jp/seamless/v2.html (last accessed 20 january, 2021)

Goode, J.R., Wohl, E., 2010. Substrate controls on the longitudinal profile of bedrock channels: Implications for reach-scale roughness. J Geophys Res 115, F03018.

Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat Sci Rev 20, 1475–1560.

Goudie, A.S., 2016. Quantification of rock control in geomorphology. Earth-Science Rev. 159, 374–387.

Granger, D.E., Kirchner, J.W., Finkel, R., 1996. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J Geol 104, 249–257.

Granger, D.E., Riebe, C.S., 2014. Cosmogenic Nuclides in Weathering and Erosion, in: Treatise on Geochemistry: Second Edition. Elsevier, pp. 401–436.

Hack, J.T., 1975. Dynamic equilibrium and landscape evolution. in: Melhorn, W.N., Flemel, R.C. (ed.) Theories of Landform Development. Allen and Unwin, Boston, pp 87–102.

Hancock, G.S., Anderson, R.S., Whipple, K.X., 1998. Beyond power: Bedrock river incision process and form, in: Geophysical Monograph Series. pp. 35–60.

Harel, M.A., Mudd, S.M., Attal, M., 2016. Global analysis of the stream power law parameters based on worldwide 10 Be denudation rates. Geomorphology. 268, 184– 196.

Hashimoto, M., Savage, M., Nishimura, T., Horikawa, H., Tsutsumi, H., 2017. Special issue “2016 Kumamoto earthquake sequence and its impact on earthquake science and hazard assessment” 4. Seismology. Earth, Planets Sp. 69, 98.

Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P., Ivy-Ochs, S., Knie, K., Nolte, E., 2002. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet Sci Lett 200, 357–369.

Himematsu, Y., Furuya, M., 2016. Fault source model for the 2016 Kumamoto earthquake sequence based on ALOS-2/PALSAR-2 pixel-offset data: Evidence for dynamic slip partitioning (EPSP-D-16-00163) 2016 Kumamoto earthquake sequence and its impact on earthquake science and hazard assessment . Earth, Planets Sp 68, 169.

Himematsu, Y., Furuya, M., 2020. Coseismic and Postseismic Crustal Deformation Associated With the 2016 Kumamoto Earthquake Sequence Revealed by PALSAR-2 Pixel Tracking and InSAR. Earth Sp Sci 7, e2020EA001200.

Hiroi, Y., Yokose, M., Oba, T., Kishi, S., Nohara, T., Yao, A., 1987. Discovery of Jurassic radiolaria from acmite-rhodonite-bearing metachert of the Gosaisyo metamorphic rocks in the Abukuma terrane, northeastern Japan. J. Geol. Soc. Jpn. 93, 445–448.

Hoshizumi, H., Ozaki, M., Miyazaki, K., Matsuura, H., Toshimitsu, S., Uto, K., Uchiumi, S., Komazawa, M., Hiroshima, T., Sudo, S., 2004. Geological map of Japan 1:200,000, Kumamoto. Geological Survey of Japan, Tsukuba.

Hoshizumi, H., Saito, M., Mizuno, K., Miyazaki, K., Toshimitsu, S., Matsumoto, A., Ohno, T., Miyakawa, A., 2015. Geological map of Japan 1:200,000, Ōita (2nd Edition). Geological Survey of Japan, Tsukuba.

Howard, A.D., Kerby, G., 1983. Channel changes in badlands. Geol Soc Am Bull 94, 739– 752.

Howard, A.D., 1994. A detachment-limited model of drainage basin evolution. Water Resour Res 30, 2261–2285.

Howard, A.D., 1998. Long profile development of bedrock channels: Interaction of weathering, mass wasting, bed erosion, and sediment transport, in: Geophysical Monograph Series. pp. 297–319.

Huang, M.H., Fielding, E.J., Liang, C., Milillo, P., Bekaert, D., Dreger, D., Salzer, J., 2017. Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy. Geophys Res Lett 44, 1266–1274.

Hurst, M.D., Mudd, S.M., Walcott, R., Attal, M., Yoo, K., 2012. Using hilltop curvature to derive the spatial distribution of erosion rates. J Geophys Res Earth Surf 117, F02017.

Iezzi, F., Mildon, Z., Walker, J.F., Roberts, G., Goodall, H., Wilkinson, M., Robertson, J., 2018. Coseismic Throw Variation Across Along-Strike Bends on Active Normal Faults: Implications for Displacement Versus Length Scaling of Earthquake Ruptures. J Geophys Res Solid Earth 123, 9817–9841.

Ikegami, N., Iwano, H., Danhara, T., Sakai, H., 2007. Fission-track ages of tuff beds from the Upper Cretaceous Mifune Group in Kyushu, Japan. J. Geol. Soc. Jpn. 113, 127– 130.

Imanishi, K., Ando, R., Kuwahara, Y., 2012. Unusual shallow normal-faulting earthquake sequence in compressional northeast Japan activated after the 2011 off the Pacific coast of Tohoku earthquake. Geophys Res Lett 39, L09306.

Ishimura, D., 2019. Co-seismic vertical displacement associated with the 2016 Kumamoto earthquake (Mw7.0) and activity of the Futagawa fault around Futa, Nishihara Village, Kumamoto prefecture. Active Fault Research 50, 33-44.

Ishimura, D., Tsutsumi, H., Toda, S., Fukushima, Y., Kumahara, Y., Takahashi, N., Ichihara, T., Takada, K., 2020. Repeated triggered ruptures on a distributed secondary fault system: An example from the 2016 Kumamoto earthquake, southwest Japan. Earth, Planets and Space, in review.

Itoh, Y., Takemura, K., Kamata, H., 1998. History of basin formation and tectonic evolution at the termination of a large transcurrent fault system: Deformation mode of central Kyushu, Japan. Tectonophysics 284, 135–150.

Jansen, J.D., Codilean, A.T., Bishop, P., Hoey, T.B., 2010. Scale dependence of lithological control on topography: Bedrock channel geometry and catchment morphometry in western Scotland. J Geol 118, 223–246.

Japan Meteorological Agency, 2020, Past meteorological data. http://www.data.jma.go.jp/obd/stats/etrn/index.php (last accessed 20 October, 2020)

Johnson, J.P.L., Whipple, K.X., Sklar, L.S., Hanks, T.C., 2009. Transport slopes, sediment cover, and bedrock channel incision in the Henry Mountains, Utah. J Geophys Res Earth Surf 114, F02014.

Kamata, H., 1985. Stratigraphy and eruption age of the volcanic rocks in the west of Miyanoharu area, Kumamoto Prefecture—Age and distribution of the volcanic activity of central-north Kyushu, Japan—. J. Geol. Soc. Jpn. 91, 289–303.

Kamata, H., Kodama, K., 1994. Tectonics of an arc-arc junction: an example from Kyushu Island at the junction of the Southwest Japan Arc and the Ryukyu Arc. Tectonophysics 233, 69–81.

Kamata, H., Kodama, K., 1999. Volcanic history and tectonics of the Southwest Japan Arc. Isl Arc 8, 393–403.

Kano, H., Kuroda, Y., Uruno, K., Nureki, T., Kanisawa, S., Maruyama, T., Umemura, H., Matsukawa, H., Seto, N., Ohira, Y., Sato, S., Isshiki, N., 1973. Geology of the Takanuki district (1:50,000). Geological Survey of Japan, Tsukuba.

Kirby, E., Whipple, K., 2001. Quantifying differential rock-uplift rates via stream profile analysis. Geology 29, 415–418.

Kirby, E., Whipple, K.X., Tang, W., Chen, Z., 2003. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J Geophys Res Solid Earth 108, 2217.

Kirby, E., Johnson, C., Furlong, K., Heimsath, A., 2007. Transient channel incision along Bolinas Ridge, California: Evidence for differential rock uplift adjacent to the San Andreas fault. J Geophys Res 112, F03S07.

Kirby, E., Whipple, K.X., 2012. Expression of active tectonics in erosional landscapes. J Struct Geol. 44, 54–75.

Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ - produced cosmogenic nuclides. Geochim Cosmochim Acta. 56, 3583–3587.

Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., Remmert, A., 2010. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 268, 187–191.

Kubo, K., Yanagisawa, Y., Yamamoto, T., Nakae, S., Takahashi, Y., Toshimitsu, S., Banno, Y., Miyachi, Y., Takahashi, M., Komazawa, M., Ohno, T., 2007. Geological map of Japan 1:200,000,Shirakawa. Geological Survey of Japan, Tsukuba.

Kumahara, Y, Okada, S, Kagohara, K., Kaneda, H., Goto, H., Tsutsumi, H., 2017. 1:25,000 Active Fault Map “Kumamoto (Revised edition)”. Geospatial Information Authority of Japan, Tsukuba.

Kuroki, S., Okada, H., Sakai, T., 1995. Sedimentary facies and environments of the Upper Cretaceous Mifune Group in the axial zone of Kyushu, Japan. J. of Sed. Soc. Jpn. 41, 65–83.

Lague, D., 2014. The stream power river incision model: Evidence, theory and beyond. Earth Surf Process Landforms 39, 38–61.

Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104, 424–439.

Lavé, J., Avouac, J.P., 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophys Res Solid Earth 106, 26561–26591.

Machida, H., Arai, F., 2003. Atlas of tephra in and around Japan (revised edition). Univ. of Tokyo press, Tokyo.

Mahony, S.H., Wallace, L.M., Miyoshi, M., Villamor, P., Sparks, R.J., Hasenaka, T., 2011. Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan. Bull Geol Soc Am 123, 2201–2223.

Mambetov, S.A., Mosinets, V.N., 1965. Kinetics of the propagation of fractures in the process of explosive breaking of rocks. Sov Min Sci 1, 232–239.

Marliyani, G.I., Arrowsmith, J.R., Whipple, K.X., 2016. Characterization of slow slip rate faults in humid areas: Cimandiri fault zone, Indonesia. J Geophys Res Earth Surf. 121, 2287–2308.

Matsumoto, Y., 1979. Some problems on volcanic activities and depression structures in Kyushu, Japan. The memoirs of the Geol. Soc. Jpn. 16, 127–139.

Matsumoto, A., Uto, K., Ono, K., Watanabe, K., 1991. K–Ar age determinations for Aso volcanic rocks-concordance with volcanostratigraphy and application to pyroclastic flows. Program and Abstracts of the Volcanological Society of Japan 1991 (2), 73.

Matsumoto, S., Yamashita, Y., Nakamoto, M., Miyazaki, M., Sakai, S., Iio, Y., Shimizu, H., Goto, K., Okada, T., Ohzono, M., Terakawa, T., Kosuga, M., Yoshimi, M., Asano, Y., 2018. Prestate of Stress and Fault Behavior During the 2016 Kumamoto Earthquake (M7.3). Geophys Res Lett 45, 637–645.

Matsushi, Y., Matsuzaki, H., 2010. Denudation rates and threshold slope in a granitic watershed, central Japan. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 268, 1201–1204.

Matsuzaki, H., Nakano, C., Tsuchiya, Y. (Sunohara), Kato, K., Maejima, Y., Miyairi, Y., Wakasa, S., Aze, T., 2007. Multi-nuclide AMS performances at MALT. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 259, 36–40.

Mitchell, N.A., Yanites, B.J., 2019. Spatially Variable Increase in Rock Uplift in the Northern U.S. Cordillera Recorded in the Distribution of River Knickpoints and Incision Depths. J Geophys Res Earth Surf 124, 1238–1260.

Mitsui, S., 1971. Studies on the Mechanism of Deformation of Sedimentary Rocks in the Iwaki Area of the Joban Coal-Field, Fukushima Prefecture. The science reports of the Tohoku University. Second series, Geology. 42, 199–272.

Miyazaki, S., Heki, K., 2001. Crustal velocity field of southwest Japan: Subduction and arc- arc collision. J Geophys Res Solid Earth 106, 4305–4326.

Miyoshi, M., Shinmura, T., Sumino, H., Sano, T., Miyabuchi, Y., Mori, Y., Inakura, H., Furukawa, K., Uno, K., Hasenaka, T., Nagao, K., Arakawa, Y., Yamamoto, J., 2013. Lateral magma intrusion from a caldera-forming magma chamber: Constraints from geochronology and geochemistry of volcanic products from lateral cones around the Aso caldera, SW Japan. Chem Geol 352, 202–210.

Molnar, P., Anderson, R.S., Anderson, S.P., 2007. Tectonics, fracturing of rock, and erosion. J Geophys Res Earth Surf 112, F03014.

Montgomery, D.R., Foufoula-Georgiou, E., 1993. Channel network source representation using digital elevation models. Water Resour Res 29, 3925–3934.

Montgomery, D.R., Gran, K.B., 2001. Downstream variations in the width of bedrock channels. Water Resour Res 37, 1841–1846.

Montgomery, D.R., Brandon, M.T., 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201, 481–489.

Nakamura, K., Shimazaki, K., Yonekura, N., 1984. Subduction, bending and education; present and Quaternary tectonics of the northern border of the Philippine Sea Plate. Bull la Société Géologique Fr S7-XXVI, 221–243.

Nakata, T., Imaizumi, T., 2002. Digital active fault map of Japan. Univ. of Tokyo press, Tokyo.

Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 258, 403–413.

Nishimura, S., Hashimoto, M., 2006. A model with rigid rotations and slip deficits for the GPS-derived velocity field in Southwest Japan. Tectonophysics 421, 187–207.

Niwa, Y., Sugai, T., Matsushima, Y., Toda, S., 2019. Millennial-scale crustal movements inferred from Holocene sedimentary succession of the Omoto plain, northern Sanriku coast, Northeast Japan: Relevance for modeling megathrust earthquake cycles. Quat Int 519, 10–24.

Okamura, Y., Yukari, M., Abe, S., Awata, Y., Azuma, T., Togo, T., Shirahama, Y., Maruyama, T., Ogami, T., Imura, R., Tsutsumi, H., Goto, H., Kumahara, Y., Torii, M., 2018. Survey and observation of the detailed location and geometry of active faults to accurately understand fault segmentation, and to reveal paleoseismic activity and slip rate of active faults. in: Ministry of education, culture, sports, science and technology, and Kyushu University, Reports on the comprehensive study of the 2016 Kumamoto earthquake. Tokyo, 5–438.

Ono, K., Watanabe, K., 1983. Aso caldera. Chikyu monthly 5, 73–82.

Osanai, Y., Nakano, N., Yoshimoto, A., Kamei, A., 2014. Metamorphic rocks in the west- central Kyushu: Kurosegawa Tectonic belt, Higo metamorphic terrane and Kiyama metamorphic rocks. J. Geol. Soc. Jpn. 120, 79–100.

Ouimet, W.B., Whipple, K.X., Granger, D.E., 2009. Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37, 579– 582.

Perron, J.T., Royden, L., 2013. An integral approach to bedrock river profile analysis. Earth Surf Process Landforms 38, 570–576.

Regalla, C., Kirby, E., Fisher, D., Bierman, P., 2013. Active forearc shortening in Tohoku, Japan: Constraints on fault geometry from erosion rates and fluvial longitudinal profiles. Geomorphology 195, 84–98.

Reinhardt, L.J., Bishop, P., Hoey, T.B., Dempster, T.J., Sanderson, D.C.W., 2007. Quantification of the transient response to base-level fall in a small mountain catchment: Sierra Nevada, southern Spain. J Geophys Res 112, F03S05.

Roe, G.H., Montgomery, D.R., Hallet, B., 2003. Orographic precipitation and the relief of mountain ranges. J Geophys Res Solid Earth 108, 2315.

Roering, J.J., Kirchner, J.W., Dietrich, W.E., 2001. Hillslope evolution by nonlinear, slope- dependent transport: Steady state morphology and equilibrium adjustment timescales. J Geophys Res Solid Earth 106, 16499–16513.

Roering, J.J., Perron, J.T., Kirchner, J.W., 2007. Functional relationships between denudation andhillslope form and relief. Earth Planet Sci Lett 264, 245–258.

Roering, J.J., 2008. How well can hillslope evolution models “explain” topography? Simulating soil transport and production with high-resolution topographic data. Bull Geol Soc Am 120, 1248–1262.

Royden, L., Taylor Perron, J., 2013. Solutions of the stream power equation and application to the evolution of river longitudinal profiles. J Geophys Res Earth Surf 118, 497–518.

Saito, M., Miyazaki, K., Toshimitsu, S., Hoshizumi, H., 2005. Geology of the Tomochi district. Quadrangle Series, 1:50,000. Geological Survey of Japan, Tsukuba.

Schwanghart, W., Scherler, D., 2014. Short Communication: TopoToolbox 2 - MATLAB- based software for topographic analysis and modeling in Earth surface sciences. Earth Surf Dyn 2, 1–7.

Scott, C.P., Arrowsmith, J.R., Nissen, E., Lajoie, L., Maruyama, T., Chiba, T., 2018. The M7 2016 Kumamoto, Japan, Earthquake: 3-D Deformation Along the Fault and Within the Damage Zone Constrained From Differential Lidar Topography. J Geophys Res Solid Earth 123, 6138–6155.

Selby, M.J., 1980. A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift fur Geomorphol 24, 31–51.

Shirahama, Y., Yoshimi, M., Awata, Y., Maruyama, T., Azuma, T., Miyashita, Y., Mori, H., Imanishi, K., Takeda, N., Ochi, T., Otsubo, M., Asahina, D., Miyakawa, A., 2016. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth, Planets Sp 68, 191.

Shirahama, Y., 2020. Estimation of average right-lateral strike-slip rate of the Hinagu section, Hinagu fault zone at north of Sabagami Pass, Kumamoto Prefecture. Abstract of JpGU- AGU Joint Meeting 2020 (SSS16-09), Makuhari.

Simons, M., Minson, S.E., Sladen, A., Ortega, F., Jiang, J., Owen, S.E., Meng, L., Ampuero, J.P., Wei, S., Chu, R., Helmberger, D. V., Kanamori, H., Hetland, E., Moore, A.W., Webb, F.H., 2011. The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science 332, 1421–1425.

Sklar, L., Dietrich, W.E., 1998. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, in: Rivers Over Rock: Fluvial Processes in Bedrock Channels, Geophysical Monograph Series 107. American Geophysical Union, pp. 237–260.

Sklar, L., Dietrich, W.E., 2001. Sediment and rock strength controls on river incision into bedrock. Geology 29, 1087–1090.

Sklar, L.S., Dietrich, W.E., 2006. The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation-abrasion incision model. Geomorphology 82, 58–83.

Snyder, N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J., 2000. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, Northern California. Bull Geol Soc Am 112, 1250–1263.

Snyder, N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J., 2003. Channel response to tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology 53, 97–127.

Stock, J.D., Montgomery, D.R., 1999. Geologic constraints on bedrock river incision using the stream power law. J Geophys Res Solid Earth 104, 4983–4993.

Stock, J., Dietrich, W.E., 2003. Valley incision by debris flows: Evidence of a topographic signature. Water Resour Res 39, 1089.

Stone, J.O., 2000. Air pressure and cosmogenic isotope production. J Geophys Res Solid Earth 105, 23753–23759.

Styron, R., 2019. The impact of earthquake cycle variability on neotectonic and paleoseismic slip rate estimates. Solid Earth 10, 15–25.

Sugito, N., Goto, H., Kumahara, Y., Tsutsumi, H., Nakata, T., Kagohara, K., Matsuta, N., Yoshida, H., 2016. Surface fault ruptures associated with the 14 April foreshock (Mj 6.5) of the 2016 Kumamoto earthquake sequence, southwest Japan. Earth, Planets Sp 68, 170.

Suto, I., Yanagisawa Y., Ogasawara, K., 2005. Tertiary geology and chronostratigraphy of the Joban area and its environs, northeastern Japan. Bull. Geol. Surv. Japan, 56, 375– 409.

Suzuki, Y., Ishimura, D., Kumaki, Y., Kumahara, Y., Chida, N., Nakata, T., Nakano, T., 2017. 1:25,000 Active Fault Map “Aso”. Geospatial Information Authority of Japan, Tsukuba. Takarada, S., Hoshizumi, H., 2020. Distribution and Eruptive Volume of Aso-4 Pyroclastic Density Current and Tephra Fall Deposits, Japan: A M8 Super-Eruption. Front Earth Sci 8, 170.

Tada, T., 1984. Spreading of the Okinawa Trough and its relation to the crustal deformation in Kyusyu. J. of Seismol. Soc. Jpn. 37, 407–415.

Tada, T., 1985. Spreading of the Okinawa Trough and its relation to the crustal deformation in Kyusyu (2). J. of Seismol. Soc. Jpn. 38, 1–12.

Tajima, Y., Hoshizumi, H., Matsumoto, A., Hirota, A., Koyaguchi, T., 2017. New insights into the Aso-1 ignimbrites sequence and preceding Koga lava flow, Aso volcano, central Kyushu. Bull. of the Volc. Soc. of Jpn. 62, 177–188.

Tazawa, J., Hasegawa, S., Hasegawa, Y., 2008. Geotectonic setting of the Upper Permian Mizukoshi Formation, central Kyushu, shouthwest Japan. J. Geol. Soc. Jpn. 114, 269– 285.

Toda, S., Tsutsumi, H., 2013. Simultaneous reactivation of two, subparallel, inland normal faults during the Mw 6.6 11 April 2011 Iwaki earthquake triggered by the M w 9.0 Tohoku-oki, Japan, Earthquake. Bull Seismol Soc Am 103, 1584–1602.

Toda, S., Kaneda, H., Okada, S., Ishimura, D., Mildon, Z.K., 2016. Slip-partitioned surface ruptures for the Mw 7.0 16 April 2016 Kumamoto, Japan, earthquake 2016 Kumamoto earthquake sequence and its impact on earthquake science and hazard assessment 4. Seismology. Earth, Planets Sp 68.

Tucker, G.E., Whipple, K.X., 2002. Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison. J Geophys Res Solid Earth 107, 2179.

von Blanckenburg, F., 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237, 462–479. Watanabe, K., 1972. Geology of the western part of Aso caldera. Mem. Fac. Educ. Kumamoto Univ. 21, 75–85.

Watanabe, K., Ono, K., 1969. Geology around Omine in the western part of Aso caldera. J. Geol. Soc. Jpn. 75, 365–374.

Watanabe, K., Momikura, Y., Tsuruta, K., 1979. Active faults and parasitic Eruption centers on the west flank of Aso caldera, Japan. The Quat. Res. 18, 89–101.

Whipple, K.X, 2004. Bedrock rivers and the geomorphology of active orogens. Annu Rev Earth Planet Sci 32, 151–185.

Whipple, K.X., Tucker, G.E., 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res Solid Earth 104, 17661–17674.

Whipple, K.X., Hancock, G.S., Anderson, R.S., 2000. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Bull Geol Soc Am 112, 490–503.

Whipple, K.X., Tucker, G.E., 2002. Implications of sediment-flux-dependent river incision models for landscape evolution. J Geophys Res 107, 2039.

Whipple, K.X., DiBiase, R.A., Crosby, B.T., 2013. Bedrock Rivers, in: Treatise on Geomorphology. Elsevier Ltd., pp. 550–573.

Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E., Roberts, G.P., 2007. Contrasting transient and steady-state rivers crossing active normal faults: New field observations from the central apennines, Italy. Basin Res 19, 529–556.

Whittaker, A.C., Boulton, S.J., 2012. Tectonic and climatic controls on knickpoint retreat rates and landscape response times. J Geophys Res Earth Surf 117, F02024.

Willett, S.D., Brandon, M.T., 2002. On steady states in mountain belts. Geology 30, 175– 178.

Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., Sheehan, D., 2006a. Tectonics from topography: Procedures, promise, and pitfalls, in: Special Paper 398: Tectonics, Climate, and Landscape Evolution. pp. 55–74.

Wobus, C.W., Crosby, B.T., Whipple, K.X., 2006b. Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution. J Geophys Res Earth Surf 111.

Wohl, E.E., 1998. Bedrock channel morphology in relation to erosional processes, in: Geophysical Monograph Series. pp. 133–151.

Yanites, B.J., 2018. The Dynamics of Channel Slope, Width, and Sediment in Actively Eroding Bedrock River Systems. J Geophys Res Earth Surf 123, 1504–1527.

Yanites, B.J., Tucker, G.E., 2010. Controls and limits on bedrock channel geometry. J Geophys Res Earth Surf 115, F04019.

Yanites, B.J., Becker, J.K., Madritsch, H., Schnellmann, M., Ehlers, T.A., 2017. Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland. J Geophys Res Earth Surf 122, 2196–2222.

Yano, T.E., Matsubara, M., 2017. Effect of newly refined hypocenter locations on the seismic activity recorded during the 2016 Kumamoto Earthquake sequence. Earth, Planets Sp 69, 74.

Zielke, O., 2018. Earthquake recurrence and the resolution potential of tectono-geomorphic records. Bull Seismol Soc Am 108, 1399–1413.

Zondervan, J.R., Whittaker, A.C., Bell, R.E., Watkins, S.E., Brooke, S.A.S., Hann, M.G., 2020. New constraints on bedrock erodibility and landscape response times upstream of an active fault. Geomorphology 351, 106937.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る