リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「TGFβ1 Regulates Human RANKL-Induced Osteoclastogenesis via Suppression of NFATc1 Expression」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

TGFβ1 Regulates Human RANKL-Induced Osteoclastogenesis via Suppression of NFATc1 Expression

德永 忠浩 広島大学

2020.09.18

概要

Osteoclasts are multinucleated giant cells with the unique ability of bone resorption [1–5]. Skeletal
system homeostasis is maintained via a skeletal metabolic process termed bone remodeling, which
involves osteoclast-mediated bone resorption and osteoblast-mediated bone formation [6–10].
Previous studies suggest that osteoclasts differentiate from bone marrow monocyte/macrophage
lineage cells in the presence of two indispensable cytokines: macrophage-colony stimulating factor
(M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL) [11,12]. In vitro osteoclast
generation following M-CSF and RANKL stimulation of CD14-positive cells (monocytes) isolated
from peripheral blood mononuclear cells (PBMCs) has been reported [13]. Osteoclast differentiation in
response to M-CSF and RANKL occurs via the formation of perfusion osteoclasts (osteoclast precursor),
mature osteoclasts, and resorbing osteoclasts [14]. ...

参考文献

1.

2.

3.

4.

5.

6.

Jacome-Galarza, C.E.; Percin, G.I.; Muller, J.T.; Mass, E.; Lazarov, T.; Eitler, J.; Rauner, M.; Yadav, V.K.;

Crozet, L.; Bohm, M.; et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts.

Nature 2019, 568, 541–545. [CrossRef] [PubMed]

Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment.

Nat. Rev. Rheumatol. 2012, 8, 656–664. [CrossRef] [PubMed]

Schett, G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res. Ther. 2007, 9, 203.

[CrossRef]

Herman, S.; Krönke, G.; Schett, G. Molecular mechanisms of inflammatory bone damage: Emerging targets

for therapy. Trends Mol. Med. 2008, 14, 245–253. [CrossRef] [PubMed]

Harre, U.; Schett, G. Cellular and molecular pathways of structural damage in rheumatoid arthritis.

Semin. Immunopathol. 2017, 39, 355–363. [CrossRef] [PubMed]

Takayanagi, H. SnapShot: Osteoimmunology. Cell Metab. 2015, 21, 502. [CrossRef]

Int. J. Mol. Sci. 2020, 21, 800

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

17 of 19

Negishi-Koga, T.; Takayanagi, H. Bone cell communication factors and Semaphorins. Bonekey Rep. 2012,

1, 183. [CrossRef]

Charles, J.F.; Aliprantis, A.O. Osteoclasts: More than ‘bone eaters’. Trends Mol. Med. 2014, 20, 449–459.

[CrossRef]

Kawai, M.; Mödder, U.I.; Khosla, S.; Rosen, C.J. Emerging therapeutic opportunities for skeletal restoration.

Nat. Rev. Drug Discov. 2011, 10, 141–156. [CrossRef]

Tang, Y.; Wu, X.; Lei, W.; Pang, L.; Wan, C.; Shi, Z.; Zhao, L.; Nagy, T.R.; Peng, X.; Hu, J.; et al. TGF-β-1-induced

migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009, 15,

757–765. [CrossRef]

Asagiri, M.; Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 2007, 40, 251–264.

[CrossRef] [PubMed]

Okamoto, K.; Takayanagi, H. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res. Ther.

2011, 13, 219. [CrossRef] [PubMed]

Nicholson, G.C.; Malakellis, M.; Collier, F.M.; Cameron, P.U.; Holloway, W.R.; Gough, T.J.; Gregorio-King, C.;

Kirkland, M.A.; Myers, D.E. Induction of osteoclasts from CD14-positive human peripheral blood

mononuclear cells by receptor activator of nuclear factor κB ligand (RANKL). Clin. Sci. (Lond.) 2000,

99, 133–140. [CrossRef] [PubMed]

Sørensen, M.G.; Henriksen, K.; Schaller, S.; Henriksen, D.B.; Nielsen, F.C.; Dziegiel, M.H.; Karsdal, M.A.

Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J. Bone

Miner. Metab. 2007, 25, 36–45. [CrossRef] [PubMed]

Goto, T.; Yamaza, T.; Tanaka, T. Cathepsins in the osteoclast. J. Electron Microsc. (Tokyo) 2003, 52, 551–558.

[CrossRef] [PubMed]

Tanaka, Y.; Ohira, T. Mechanisms and therapeutic targets for bone damage in rheumatoid arthritis, in

particular the RANK-RANKL system. Curr. Opin. Pharmacol. 2018, 40, 110–119. [CrossRef] [PubMed]

Fennen, M.; Pap, T.; Dankbar, B. Smad-dependent mechanisms of inflammatory bone destruction. Arthritis

Res. Ther. 2016, 18, 279. [CrossRef]

Kasagi, S.; Chen, W. TGF-beta1 on osteoimmunology and the bone component cells. Cell Biosci. 2013, 3, 4.

[CrossRef]

Bonewald, L.F.; Mundy, G.R. Role of transforming growth factor-beta in bone remodeling. Clin. Orthop.

Relat. Res. 1990, 261–276. [CrossRef]

Janssens, K.; ten Dijke, P.; Janssens, S.; Van Hul, W. Transforming growth factor-β1 to the bone. Endocr. Rev.

2005, 26, 743–774. [CrossRef]

Galvin, R.J.; Gatlin, C.L.; Horn, J.W.; Fuson, T.R. TGF-β enhances osteoclast differentiation in hematopoietic

cell cultures stimulated with RANKL and M-CSF. Biochem. Biophys. Res. Commun. 1999, 265, 233–239.

[CrossRef] [PubMed]

Fuller, K.; Lean, J.M.; Bayley, K.E.; Wani, M.R.; Chambers, T.J. A role for TGFbeta(1) in osteoclast differentiation

and survival. J. Cell Sci. 2000, 113, 2445–2453.

Kaneda, T.; Nojima, T.; Nakagawa, M.; Ogasawara, A.; Kaneko, H.; Sato, T.; Mano, H.; Kumegawa, M.;

Hakeda, Y. Endogenous production of TGF-β is essential for osteoclastogenesis induced by a combination

of receptor activator of NF-κB ligand and macrophage-colony-stimulating factor. J. Immunol. 2000, 165,

4254–4263. [CrossRef]

Yan, T.; Riggs, B.L.; Boyle, W.J.; Khosla, S. Regulation of osteoclastogenesis and RANK expression by

TGF-beta1. J. Cell. Biochem. 2001, 83, 320–325. [CrossRef] [PubMed]

Koseki, T.; Gao, Y.; Okahashi, N.; Murase, Y.; Tsujisawa, T.; Sato, T.; Yamato, K.; Nishihara, T. Role of TGF-beta

family in osteoclastogenesis induced by RANKL. Cell. Signal. 2002, 14, 31–36. [CrossRef]

Fox, S.W.; Haque, S.J.; Lovibond, A.C.; Chambers, T.J. The possible role of TGF-β-induced suppressors of

cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro. J. Immunol. 2003, 170,

3679–3687. [CrossRef]

Fox, S.W.; Evans, K.E.; Lovibond, A.C. Transforming growth factor-beta enables NFATc1 expression during

osteoclastogenesis. Biochem. Biophys. Res. Commun. 2008, 366, 123–128. [CrossRef]

Gingery, A.; Bradley, E.W.; Pederson, L.; Ruan, M.; Horwood, N.J.; Oursler, M.J. TGF-beta coordinately

activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp. Cell Res. 2008,

314, 2725–2738. [CrossRef]

Int. J. Mol. Sci. 2020, 21, 800

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

18 of 19

Yasui, T.; Kadono, Y.; Nakamura, M.; Oshima, Y.; Matsumoto, T.; Masuda, H.; Hirose, J.; Omata, Y.;

Yasuda, H.; Imamura, T.; et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through

molecular interaction between Smad3 and Traf6. J. Bone Miner. Res. 2011, 26, 1447–1456. [CrossRef]

Omata, Y.; Yasui, T.; Hirose, J.; Izawa, N.; Imai, Y.; Matsumoto, T.; Masuda, H.; Tokuyama, N.; Nakamura, S.;

Tsutsumi, S.; et al. Genomewide comprehensive analysis reveals critical cooperation between Smad and

c-Fos in RANKL-induced osteoclastogenesis. J. Bone Miner. Res. 2015, 30, 869–877. [CrossRef]

Itonaga, I.; Sabokbar, A.; Sun, S.G.; Kudo, O.; Danks, L.; Ferguson, D.; Fujikawa, Y.; Athanasou, N.A.

Transforming growth factor-β induces osteoclast formation in the absence of RANKL. Bone 2004, 34, 57–64.

[CrossRef] [PubMed]

Chenu, C.; Pfeilschifter, J.; Mundy, G.R.; Roodman, G.D. Transforming growth factor beta inhibits formation

of osteoclast-like cells in long-term human marrow cultures. Proc. Natl. Acad. Sci. USA 1988, 85, 5683–5687.

[CrossRef] [PubMed]

Takai, H.; Kanematsu, M.; Yano, K.; Tsuda, E.; Higashio, K.; Ikeda, K.; Watanabe, K.; Yamada, Y. Transforming

growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone

marrow stromal cells. J. Biol. Chem. 1998, 273, 27091–27096. [CrossRef] [PubMed]

Lari, R.; Fleetwood, A.J.; Kitchener, P.D.; Cook, A.D.; Pavasovic, D.; Hertzog, P.J.; Hamilton, J.A. Macrophage

lineage phenotypes and osteoclastogenesis–complexity in the control by GM-CSF and TGF-beta. Bone 2007,

40, 323–336. [CrossRef]

Zhao, H.; Zhang, J.; Shao, H.; Liu, J.; Jin, M.; Chen, J.; Huang, Y. Transforming growth factor β1/Smad4

signaling affects osteoclast differentiation via regulation of miR-155 expression. Mol. Cells 2017, 40, 211–221.

Kale, V.P. Differential activation of MAPK signaling pathways by TGF-β1 forms the molecular mechanism

behind its dose-dependent bidirectional effects on hematopoiesis. Stem Cells Dev. 2004, 13, 27–38. [CrossRef]

Kale, V.P.; Vaidya, A.A. Molecular mechanisms behind the dose-dependent differential activation of MAPK

pathways induced by transforming growth factor-β1 in hematopoietic cells. Stem Cells Dev. 2004, 13, 536–547.

[CrossRef]

Karst, M.; Gorny, G.; Galvin, R.J.; Oursler, M.J. Roles of stromal cell RANKL, OPG, and M-CSF expression in

biphasic TGF-beta regulation of osteoclast differentiation. J. Cell. Physiol. 2004, 200, 99–106. [CrossRef]

Karsdal, M.A.; Hjorth, P.; Henriksen, K.; Kirkegaard, T.; Nielsen, K.L.; Lou, H.; Delaisse, J.M.; Foged, N.T.

Transforming growth factor-β controls human osteoclastogenesis through the p38 MAPK and regulation of

RANK expression. J. Biol. Chem. 2003, 278, 44975–44987. [CrossRef]

Massey, H.M.; Scopes, J.; Horton, M.A.; Flanagan, A.M. Transforming growth factor-beta1 (TGF-beta)

stimulates the osteoclast-forming potential of peripheral blood hematopoietic precursors in a lymphocyte-rich

microenvironment. Bone 2001, 28, 577–582. [CrossRef]

Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 1998, 67, 753–791. [CrossRef] [PubMed]

Blair, H.C.; Zaidi, M. Osteoclastic differentiation and function regulated by old and new pathways. Rev. Endocr.

Metab. Disord. 2006, 7, 23–32. [CrossRef] [PubMed]

de Vries, T.J.; El Bakkali, I.; Kamradt, T.; Schett, G.; Jansen, I.D.C.; D’Amelio, P. What Are the Peripheral

Blood Determinants for Increased Osteoclast Formation in the Various Inflammatory Diseases Associated

With Bone Loss? Front. Immunol. 2019, 10, 505. [CrossRef] [PubMed]

Hamon, G.; Mulloy, R.H.; Chen, G.; Chow, R.; Birkenmaier, C.; Horn, J.K. Transforming growth factor-β 1

lowers the CD14 content of monocytes. J. Surg. Res. 1994, 57, 574–578. [CrossRef] [PubMed]

Basoni, C.; Nobles, M.; Grimshaw, A.; Desgranges, C.; Davies, D.; Perretti, M.; Kramer, I.M.; Genot, E.

Inhibitory control of TGF-β1 on the activation of Rap1, CD11b, and transendothelial migration of leukocytes.

FASEB J. 2005, 19, 822–824. [CrossRef] [PubMed]

Park, J.H.; Lee, N.K.; Lee, S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and

Maturation. Mol. Cells 2017, 40, 706–713.

Moynagh, P.N. The NF-κB pathway. J. Cell Sci. 2005, 118, 4589–4592. [CrossRef]

Yamashita, T.; Yao, Z.; Li, F.; Zhang, Q.; Badell, I.R.; Schwarz, E.M.; Takeshita, S.; Wagner, E.F.; Noda, M.;

Matsuo, K.; et al. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL)

and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1.

J. Biol. Chem. 2007, 282, 18245–18253. [CrossRef]

Int. J. Mol. Sci. 2020, 21, 800

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

19 of 19

Udagawa, N.; Takahashi, N.; Akatsu, T.; Tanaka, H.; Sasaki, T.; Nishihara, T.; Koga, T.; Martin, T.J.; Suda, T.

Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts

under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad.

Sci. USA 1990, 87, 7260–7264. [CrossRef]

Kotake, S.; Udagawa, N.; Hakoda, M.; Mogi, M.; Yano, K.; Tsuda, E.; Takahashi, K.; Furuya, T.; Ishiyama, S.;

Kim, K.J.; et al. Activated human T cells directly induce osteoclastogenesis from human monocytes: Possible

role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis. Rheum. 2001, 44, 1003–1012.

[CrossRef]

Kotake, S.; Yago, T.; Kawamoto, M.; Nanke, Y. Effects of NSAIDs on differentiation and function of human and

murine osteoclasts –crucial ‘human osteoclastology’. Pharmaceuticals (Basel) 2010, 3, 1394–1410. [CrossRef]

[PubMed]

Nose, M.; Yamazaki, H.; Hagino, H.; Morio, Y.; Hayashi, S.; Teshima, R. Comparison of osteoclast precursors in

peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients. J. Bone Miner. Metab.

2009, 27, 57–65. [CrossRef] [PubMed]

Durand, M.; Boire, G.; Komarova, S.V.; Dixon, S.J.; Sims, S.M.; Harrison, R.E.; Nabavi, N.; Maria, O.;

Manolson, M.F.; Mizianty, M.; et al. The increased in vitro osteoclastogenesis in patients with rheumatoid

arthritis is due to increased percentage of precursors and decreased apoptosis—the In Vitro Osteoclast

Differentiation in Arthritis (IODA) study. Bone 2011, 48, 588–596. [CrossRef] [PubMed]

Massey, H.M.; Flanagan, A.M. Human osteoclasts derive from CD14-positive monocytes. Br. J. Haematol.

1999, 106, 167–170. [CrossRef]

Sprangers, S.; Schoenmaker, T.; Cao, Y.; Everts, V.; de Vries, T.J. Different Blood-Borne Human Osteoclast

Precursors Respond in Distinct Ways to IL-17A. J. Cell Physiol. 2016, 231, 1249–1260. [CrossRef]

Anbazhagan, K.; Duroux-Richard, I.; Jorgensen, C.; Apparailly, F. Transcriptomic network support distinct

roles of classical and non-classical monocytes in human. Int. Rev. Immunol. 2014, 33, 470–489. [CrossRef]

Hayashi, H.; Nakahama, K.; Sato, T.; Tuchiya, T.; Asakawa, Y.; Maemura, T.; Tanaka, M.; Morita, M.; Morita, I.

The role of Mac-1 (CD11b/CD18) in osteoclast differentiation induced by receptor activator of nuclear

factor-kappaB ligand. FEBS Lett. 2008, 582, 3243–3248. [CrossRef]

Li, X.; Akiyama, M.; Nakahama, K.; Koshiishi, T.; Takeda, S.; Morita, I. Role of intercellular adhesion

molecule-2 in osteoclastogenesis. Genes Cells 2012, 17, 568–575. [CrossRef]

Yang, G.; Chen, X.; Yan, Z.; Zhu, Q.; Yang, C. CD11b promotes the differentiation of osteoclasts induced

by RANKL through the spleen tyrosine kinase signalling pathway. J. Cell Mol. Med. 2017, 21, 3445–3452.

[CrossRef]

Asagiri, M.; Sato, K.; Usami, T.; Ochi, S.; Nishina, H.; Yoshida, H.; Morita, I.; Wagner, E.F.; Mak, T.W.;

Serfling, E.; et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis.

J. Exp. Med. 2005, 202, 1261–1269. [CrossRef]

Munoz-Valle, J.F.; Torres-Carrillo, N.M.; Guzman-Guzman, I.P.; Torres-Carrillo, N.; Ruiz-Quezada, S.L.;

Palafox-Sanchez, C.A.; Rangel-Villalobos, H.; Ramirez-Duenas, M.G.; Parra-Rojas, I.; Fafutis-Morris, M.; et al.

The functional class evaluated in rheumatoid arthritis is associated with soluble TGF-beta1 serum levels

but not with G915C (Arg25Pro) TGF-beta1 polymorphism. Rheumatol. Int. 2012, 32, 367–372. [CrossRef]

[PubMed]

Mieliauskaite, D.; Venalis, P.; Dumalakiene, I.; Venalis, A.; Distler, J. Relationship between serum levels of

TGF-beta1 and clinical parameters in patients with rheumatoid arthritis and Sjogren’s syndrome secondary

to rheumatoid arthritis. Autoimmunity 2009, 42, 356–358. [CrossRef] [PubMed]

Arnett, F.C.; Edworthy, S.M.; Bloch, D.A.; McShane, D.J.; Fries, J.F.; Cooper, N.S.; Healey, L.A.; Kaplan, S.R.;

Liang, M.H.; Luthra, H.S.; et al. The American Rheumatism Association 1987 revised criteria for the

classification of rheumatoid arthritis. Arthritis Rheum. 1988, 31, 315–324. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る